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Abstract

Self-supervised learning models extract general-
purpose representations from data. Quantifying the
reliability of these representations is crucial, as
many downstream models rely on them as input
for their own tasks. To this end, we introduce a
formal definition of representation reliability: the
representation for a given test point is considered
to be reliable if the downstream models built on
top of that representation can consistently gener-
ate accurate predictions for that test point. How-
ever, accessing downstream data to quantify the
representation reliability is often infeasible or re-
stricted due to privacy concerns. We propose an
ensemble-based method for estimating the repre-
sentation reliability without knowing the down-
stream tasks a priori. Our method is based on the
concept of neighborhood consistency across dis-
tinct pre-trained representation spaces. The key
insight is to find shared neighboring points as an-
chors to align these representation spaces before
comparing them. We demonstrate through com-
prehensive numerical experiments that our method
effectively captures the representation reliability
with a high degree of correlation, achieving robust
and favorable performance compared with base-
line methods. The code is available at https:
//github.com/azizanlab/repreli.

1 INTRODUCTION

Self-supervised learning (SSL) has opened the door to the
development of general-purpose embedding functions, often
referred to as foundation models, that can be used or fine-
tuned for various downstream tasks [Jaiswal et al., 2020,
Jing and Tian, 2020]. These embedding functions are pre-
trained on large corpora of different data modalities, span-

ning visual [Chen et al., 2020a], textual [Brown et al., 2020],
audio [Al-Tahan and Mohsenzadeh, 2021], and their combi-
nations [Radford et al., 2021, Morgado et al., 2021], aimed
at being general-purpose and agnostic to the downstream
tasks they may be utilized for. For instance, the recent surge
in large pre-trained models such as CLIP [Radford et al.,
2021] and ChatGPT [OpenAI, 2022] has resulted in the de-
velopment of many prompt-based or dialogue-based down-
stream use cases, none of which are known a priori when
the pre-trained model is being deployed.

Embedding functions learned through SSL may produce
unreliable outputs. For example, large language models can
generate factually inaccurate information with a high level
of confidence [Bommasani et al., 2021, Tran et al., 2022].
With the increasing use of SSL to generate textual, visual,
and audio content, unreliable embedding functions could
have significant implications. Furthermore, given that these
embedding functions are frequently employed as frozen
backbones for various downstream use cases, adding more
labeled downstream data may not improve the performance
if the initial representation is unreliable. Therefore, having
notion(s) of reliability/uncertainty for such pre-trained
models, alongside their abstract representations, would be
a key enabler for their reliable deployment, especially in
safety-critical settings.

In this paper, we introduce a formal definition of representa-
tion reliability based on its impact on downstream tasks. Our
definition pertains to a representation of a given test point
produced by an embedding function. If a variety of down-
stream tasks that build upon this representation consistently
yield accurate results for the test point, we consider this
representation reliable. Existing uncertainty quantification
(UQ) frameworks mostly focus on the supervised learning
setting, where they rely on the consistency of predictions
across various predictive models. We provide a counter-
example showing that they cannot be directly applied to our
setting, as representations lack a ground truth for compari-
son. In other words, inconsistent predictions often indicate
that the predictions are not reliable, but inconsistent repre-
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sentations do not necessarily imply that the representations
are unreliable. Hence, it is critical to align representation
spaces in such a way that corresponding regions have similar
semantic meanings before comparing them.

We propose an ensemble-based approach for estimating rep-
resentation reliability without knowing downstream tasks a
priori. We prove that a test point has a reliable representa-
tion if it has a reliable neighbor which remains consistently
close to the test point, across multiple representation spaces
generated by different embedding functions. Based on this
theoretical insight, we select a set of embedding functions
and reference data (e.g., data used for training the embed-
ding functions). We then compute the number of consistent
neighboring points among the reference data to estimate the
representation reliability. The underlying reasoning is that
a test point with more consistent neighbors is more likely
to have a reliable and consistent neighbor. This reliable and
consistent neighbor can be used to align different repre-
sentation spaces that are generated by different embedding
functions.

We conduct extensive numerical experiments to validate our
approach and compare it with baselines, including state-
of-the-art out-of-distribution (OOD) detection measures
and UQ in supervised learning. Our approach consistently
captures the representation reliability in all different ap-
plications. These applications range from predicting the
performance of embedding functions when adapting them
to in-distribution or out-of-distribution downstream tasks
to ranking the reliability of different embedding functions.
While the baselines may occasionally surpass our approach,
their performance fluctuates significantly across different
settings and can even become negative, posing a risk when
used to assess reliability in safety-critical settings.

In summary, our main contributions are:

• We present a formal definition of representation reliability,
which quantifies how well an abstract representation can
be used across various downstream tasks. To the best of
our knowledge, this is the first comprehensive study to
investigate uncertainty in representation space.

• We provide a counter-example, showing that existing UQ
tools in supervised learning cannot be directly applied to
estimate the representation reliability.

• We prove a theorem stating that a reliable and consistent
neighbor of a test point can serve as an anchor point for
aligning different representation spaces and assuring the
representation reliability.

• Based on our theoretical findings, we introduce an
ensemble-based approach that uses neighborhood con-
sistency to estimate the representation reliability.

• We conduct comprehensive numerical experiments, show-
ing that our approach consistently captures the represen-
tation reliability whereas the baselines could not.

Broad Impact and Implication. Our work introduces a
way to quantify the reliability of pre-trained models prior to
their deployment in specific downstream tasks, which has
several implications. Imagine a practitioner has access to
multiple pre-trained models that have been trained using dis-
tinct learning paradigms, data, or architectures. Our method
helps compare and rank these models based on their reliabil-
ity scores, enabling the practitioner to select the model with
the highest reliability score. This is particularly valuable
when transmitting downstream training data is challenging
due to privacy concerns, or when the downstream tasks shift
over time. Similarly, in cases where a pre-trained model
yields incorrect (or harmful) decisions for specific individ-
uals, our method can help explain whether the issue stems
from the abstract representation or the projection heads
added to the pre-trained model. We hope our effort can
push the frontiers of self-supervised learning towards more
responsible and reliable deployment, encouraging further
research to ensure the transferability of knowledge acquired
during pre-training across diverse tasks and domains.

RELATED WORKS

Uncertainty Quantification in Supervised Learning.
Existing work on UQ mostly focused on supervised learning
settings. For example, Bayesian inference quantifies uncer-
tainty by placing a prior distribution over model parameters,
updating this prior distribution with observed data to obtain
a posterior distribution, and examining the inconsistency
of predictions derived from the posterior distribution [Neal,
1996, MacKay, 1992, Kendall and Gal, 2017, Depeweg et al.,
2018]. Since the posterior distribution may not have an an-
alytical form, many approximating approaches have been
introduced, including Monte Carlo dropout [Gal and Ghahra-
mani, 2016], deep ensembles [Osband et al., 2018, Laksh-
minarayanan et al., 2017, Wen et al., 2020], and Laplace
approximation [Daxberger et al., 2021, Sharma et al., 2021].
In this paper, we focus on quantifying the uncertainty of
representations and prove that standard supervised-learning
frameworks cannot be directly applied to investigate repre-
sentation uncertainty (see Section 3.2 for more details).

Novelty Detection and Representation Reliability. Self-
supervised learning is increasingly used for novelty/OOD
detection. These approaches train self-supervised models
and then compute an OOD score for a new test point based
on its distance from the training data in the representation
space [Lee et al., 2018, van Amersfoort et al., 2020, Tack
et al., 2020, Mirzaei et al., 2022]. However, OOD detec-
tion and our representation reliability are different concepts.
The former identifies whether a test point belongs to the
same distribution as the (pre-)training data, while the latter
evaluates the possibility that a test point can receive accu-
rate predictions when the self-supervised learning model is
adapted to various downstream tasks (see Section 3.1 for



more details).

To compare with this line of work, we conduct comprehen-
sive numerical experiments (Section 4). The results suggest
that our approach more robustly captures the representation
reliability compared with state-of-the-art OOD detection
measures and the empirical metrics proposed in Ardeshir
and Azizan [2022]. Finally, our representation reliability
extends the notion of probe as in HaoChen et al. [2021]
to multiple downstream tasks. We introduce an algorithm
for estimating the representation reliability without prior
knowledge of the specific downstream tasks.

Uncertainty-Aware Representation Learning. There is
a growing body of research aimed at training robust self-
supervised models that map input points to a distribution in
the representation space, rather than to a single point [Vilnis
and McCallum, 2015, Neelakantan et al., 2014, Karaletsos
et al., 2016, Bojchevski and Günnemann, 2018, Oh et al.,
2018, Chen et al., 2020a, Wu and Goodman, 2020, Zhang
et al., 2021, Almecija et al., 2022]. They rely on special
neural network architectures and/or introduce alternative
training schemes. For example, the approach by Zhang et al.
[2021] requires an additional output (i.e., a temperature
parameter) and the approach by Oh et al. [2018] requires
the network to output means and variances of a mixture of
Gaussian distributions. In contrast, we avoid making any
assumptions about the training process of the embedding
functions, while only needing black-box access to them. Fur-
thermore, we provide a theoretical analysis of our method
and explore the impact of the representation reliability on
the performance of downstream tasks. We provide a more
in-depth discussion about related works in Appendix E.

2 BACKGROUND: UNCERTAINTY
QUANTIFICATION IN SUPERVISED
LEARNING

We recall a Bayesian-inference view of epistemic uncer-
tainty in supervised learning. Consider predictive models,
where each model (e.g., a neural network) f outputs a pre-
dictive probability p(y|x, f) for an input variable x. In the
Bayesian framework, a prior probability distribution p(f) is
first introduced and a posterior distribution is learned given
a training dataset D: p(f |D) ∝ p(D|f) · p(f). For a new
test point x∗, its posterior predictive distribution is obtained
by averaging the predictive probabilities over models:

p(ŷ∗ | x∗,D) =

∫
p(ŷ∗ | x∗, f)p(f | D)df. (1)

Since the posterior distribution does not have an analyti-
cal expression for complex neural networks, Monte Carlo
approaches could be used to approximate the integral in
Equation (1). One of the most prominent approaches is deep

ensembles [Lakshminarayanan et al., 2017], in which a class
of neural networks F are trained with M different random
initialization of the learnable parameters {θi}Mi=1. The pos-
terior predictive distribution is then approximated by:

p(ŷ∗ | x∗,D) ≈ 1

M

M∑
i=1

[
δ(ŷ∗ − fθi(x

∗))
]
. (2)

Finally, the uncertainty can be assessed by the inconsistency
of the output across sampled functions, which can be quan-
tified by metrics such as variance1 (for regression tasks) or
entropy (for classification tasks). For example, in regression
tasks, the uncertainty can be estimated by

Unc (x∗ | D) = Var (ŷ∗ | x∗,D) (3)

≈ Vari∼[M ] (fθi(x
∗)) =

1

M2

∑
i<j

∥fθi(x∗)− fθj (x
∗)∥22,

where Vari∼[M ] (·) is the population variance over index
i ∈ {1, · · · ,M}. When different models disagree on their
predictions, it suggests a high level of uncertainty. Con-
versely, if multiple predictive models give similar outputs,
the prediction can be considered certain. However, this prin-
ciple does not hold in self-supervised learning, as represen-
tations do not have a ground truth and different pre-trained
models can carry different semantic meanings.

3 QUANTIFYING REPRESENTATION
RELIABILITY

In this section, we introduce a framework for assessing the
reliability of representations assigned by pre-trained mod-
els. We discuss limitations of existing UQ frameworks in
supervised learning when applied to representation spaces.
Then we present an ensemble-based method that examines
the consistency of neighboring points in the representation
space. Our method effectively captures the representation
reliability without the need for a priori knowledge of down-
stream tasks.

3.1 REPRESENTATION RELIABILITY

We introduce a formal definition of representation reliability
by examining its impact on various downstream tasks. In-
tuitively, a reliable representation assigned by a pre-trained
model should consistently yield accurate outcomes when
the model is adapted to these downstream tasks.

We introduce some notations that will be used in our def-
inition. We define H as a class of embedding functions
trained by a self-supervised learning algorithm (e.g., Sim-
CLR [Chen et al., 2020a]) using a pre-trained dataset (e.g.,

1For a random vector, its variance is defined as the trace of its
covariance matrix.
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Figure 1: Illustration of representation reliability (Reli) and neighborhood consistency (NC). For a test point x∗ and a class
of pre-trained backbone models H = {h1, · · · , hM}, the representation reliability is defined as the average performance of
downstream models when using the representations of x∗ provided by the backbones in H. Our NC estimates Reli without
requiring any prior knowledge of the downstream tasks. It operates by measuring the number of consistent neighbors of
x∗ among reference points across different representation spaces.

ImageNet [Deng et al., 2009]). Each embedding function
h : X → Z maps a data point (e.g., an image) to an ab-
stract representation. Here the representation space Z can
be either a real d-space Rd or a unit hyper-sphere Sd−1.

We consider a collection of downstream tasks (e.g., classi-
fications), denoted as T . Each task is associated with a set
of downstream heads (i.e., additional layers added on top
of the embedding function) and a population risk function
that assesses the performance of each downstream head.
For each task t, we optimize the risk function to obtain an
optimal head gh,t. This way, we can eliminate the impact
of downstream training processes on our definition. The
representation reliability of a new test point x∗ is measured
by the (average) performance of these downstream models
on x∗. A formal definition is provided below.

Definition 1. Let T be a collection of downstream tasks.
For each task t ∈ T , we take an embedding function h
(uniformly at random) from H and find an optimal down-
stream head gh,t based on h. We define the representation
reliability for a test point x∗ ∈ X as:

Reli(x∗;H, T ) ≜
1

|T |
∑
t∈T

Perft (gh,t ◦ h, x∗) (4)

where Perft (·) measures the performance of the predictive
model gh,t ◦ h on x∗ for task t.

For classification downstream tasks with C classes, an ex-
ample of Perft (gh,t ◦ h, x∗) is the negative Brier score,
defined as:

−
C∑

c=1

( 1

|H|
∑
h∈H

gh,t ◦ h(x∗)[c] − y∗t[c]

)2

.

Here y∗t ∈ {0, 1}C represents the label of x∗ on task t. For
additional examples of Perft (·), please refer to Appendix B.

The above definition assumes that the set of downstream
tasks (and ground-truth labels) are accessible. In practice,
this may not always be the case (see Broad Impact and Im-
plication in Section 1 for examples). Next, we discuss how
to estimate the representation reliability based on the prop-
erties of the representation itself, without prior knowledge
of the downstream tasks.

3.2 FIRST ATTEMPT: REPRESENTATION
CONSISTENCY

Our first attempt is directly applying standard supervised-
learning techniques (see Section 2) to estimate the represen-
tation reliability. Recall that if multiple predictive models
give different predictions for the same test point, then it is
likely that their predictions are uncertain. One may wonder
whether the same idea can be applied to estimate the repre-
sentation reliability. We present a negative result, showing
that even if different embedding functions produce com-
pletely different representations, their downstream predic-
tions can still be consistent. Below, we provide an (informal)
theorem and defer a more rigorous statement along with its
proof to Appendix A.1.

Theorem 1. For any constant A and a test point x∗, there
exist embedding functions h1, · · · , hM ∈ H such that
Vari∼[M ] (hi(x

∗)) ≥ A but Vari∼[M ] (gi,t ◦ hi(x
∗)) = 0

for any downstream task t. Here gi,t is an optimal down-
stream head for hi under task t.

The key insight behind our proof is that an input point’s



representation is not unique (e.g., rotated spaces are in fact
equivalent). In other words, even if different embedding
functions assign distinct representations to the same test
point, downstream heads built on these embedding functions
can also vary, ultimately leading to similar predictions.

3.3 PROPOSED FRAMEWORK:
NEIGHBORHOOD CONSISTENCY

To address the aforementioned issue, we propose the idea
of using an “anchor” point to align different representation
spaces. The anchor point serves as a bridge that transforms
different representation spaces into the same space. The
graphical visualization of this idea is illustrated in Figure 1
and Figure 3. We formalize this intuition more rigorously
in the following theorem. It states that if a test point has a
(reliable) consistent neighboring point across all representa-
tion spaces, then uncertainty of its downstream predictions
are bounded above.

Theorem 2. For a test point x∗, suppose that there exists
a consistent neighbor xr across all embedding functions
H = {h1, · · · , hM}, satisfying

∥hi(x
r)− hi(x

∗))∥2 ≤ ϵnb , ∀i ∈ [M ]. (5)

Suppose the downstream heads gi,t are Lipschitz contin-
uous. Then, for any downstream task t, the variance of
downstream prediction at x∗ is bounded above by:

Vari∼[M ] (gi,t ◦ hi(x
∗)) ≤ (

√
2Ltϵnb + σr,t)

2. (6)

where σ2
r,t = Vari∼[M ] (gi,t ◦ hi(x

r)) is the reliability of
xr as measured by variance, the function gi,t is the optimal
downstream head for task t built upon hi, whose Lipschitz
constant is Li,t, and Lt = maxi Li,t.2

See Appendix A.2 for proof and extension to the multi-
output case. The key takeaway is that if we can find a refer-
ence point consistently close to the test point, it can serve
as an anchor point that helps align representation spaces
with distinct semantic meanings. Plus, the reliability of the
reference point along with its relative distance to the test
point ensures a lower bound on the representation reliability
of the test point. Additionally, if downstream heads are bi-
Lipschitz continuous3 and the reference points are reliable,
the converse holds: if a test point x∗ does not have any con-
sistent neighbors, it is unreliable. We defer the additional
details to Appendix A.4.

2When spectral normalized weights are employed with 1-
Lipschitz continuous activation functions (e.g., identity, ReLU,
sigmoid, or softmax), the constant Lt = 1.

3Bi-Lipschitz continuity ensures that both the function and its
inverse mapping are Lipschitz continuous, a property satisfied by
e.g., linear heads.

In practice, identifying a reliable reference point is chal-
lenging without prior knowledge of the downstream tasks.
Instead of searching for a single point as the anchor, we draw
a set of reference points, denoted as Xref = {x(l)}nl=1. We
then compute the number of consistent neighboring points
within Xref and use it to estimate the representation reliabil-
ity. The rationale behind this is that a test point with more
consistent neighbors is more likely to have a reliable and
consistent neighbor.

Our Algorithm. Given an ensemble of embedding func-
tions h1, · · · , hM and Xref, we define the Neighborhood
Consistency (NC) of a test point x∗ as:

NCk(x
∗) =

1

M2

∑
i<j

Sim
(
k-NNi

(
x∗), k-NNj

(
x∗))

(7)
where k-NNi(x

∗) is the index set of k-nearest neighbors
of hi(x

∗) among {hi(x) | x ∈ Xref} and Sim (·, ·) is a
measure of similarity between sets (e.g., Jaccard Similarity).
A further discussion on NC is described in Appendix D.

Remark 1. The parameter k involves a trade-off between
two factors: choosing a neighborhood closer to the test point
and increasing the chance of incorporating a more reliable
neighbor. As shown in Theorem 2, the reliability of a test
point’s representation hinges on whether it has a nearby
reliable neighbor. Hence, a large k may result in selecting a
reliable neighbor, but it could be far from the test point. On
the other hand, since the upper bound in Theorem 2 holds
using any one of the neighbors as the anchor point, the reli-
ability of the test point is bounded using the neighbor with
the smallest σr,t. Consequently, a small k may compromise
the reliability of the selected neighboring point. We present
an empirical study about this trade-off in Section 4.5.

Finally, our NC requires a set of embedding functions for
computing consistent neighbors. We extend this algorithm
to evaluate the reliability of a single embedding function in
Section 4.4.

4 NUMERICAL EXPERIMENTS

4.1 EXPERIMENT SETUP

Embedding Function. We use SimCLR [Chen et al.,
2020a], Bootstrap Your Own Latent (BYOL) [Grill et al.,
2020], and Momentum Contrast (MoCo) [He et al., 2020]
to pre-train ResNet-18 and ResNet-50 models [He et al.,
2016] as the embedding functions, using a single NVIDIA
V100 GPU. During the pre-training stage, we do not use
any class label information. To construct the ensemble, we
train a total of M = 10 embedding functions using each
pre-training algorithm and dataset with different random
seed, following Lakshminarayanan et al. [2017]. The impact
of M to our experiment is studied in Section 4.5.



Table 1: Comparison of our neighborhood consistency (NC100) with baseline methods in terms of their correlation with the
representation reliability. We use Kendall’s τ coefficient to measure this correlation. Downstream tasks are in-distribution
tasks where the model is pre-trained and fine-tuned on the same dataset. Performance on these tasks is evaluated using
either negative predictive entropy or negative Brier score. The highest and second-highest scores are highlighted in bold and
underlined, respectively. As shown, our method consistently receives a favorable score compared with baselines.

Pretraining
Algorithms Method

ResNet-18 ResNet-50
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Entropy Brier Entropy Brier Entropy Brier Entropy Brier

SimCLR

NC100 0.3865 0.3262 0.3130 0.2590 0.3786 0.3206 0.3070 0.2516
Dist1 0.3021 0.2544 0.0757 0.0635 0.2750 0.2376 0.1100 0.0919
Norm 0.2907 0.2429 0.1198 0.0649 0.2789 0.2385 0.1311 0.0710
LL 0.1797 0.1356 -0.0989 -0.1067 0.1700 0.1348 -0.0831 -0.0959
FV -0.0476 -0.0458 -0.1891 -0.1710 -0.0402 -0.0393 -0.1984 -0.1870

BYOL

NC100 0.2749 0.1826 0.2354 0.1753 0.3524 0.2131 0.3233 0.1733
Dist1 0.0322 0.0385 -0.1477 -0.0709 -0.1858 -0.1442 -0.3124 -0.1598
Norm 0.0725 0.0235 0.1659 0.1231 0.1990 0.1184 0.1990 0.1476
LL -0.0539 -0.0196 -0.2637 -0.1650 -0.2542 -0.1784 -0.3777 -0.2018
FV 0.1439 0.1003 -0.1727 -0.1284 0.0676 0.0524 -0.0213 -0.0625

MoCo

NC100 0.4157 0.3653 0.3632 0.3128 0.3757 0.3236 0.2667 0.2225
Dist1 0.3523 0.3093 0.2246 0.1925 0.3831 0.3397 0.2453 0.2183
Norm 0.3238 0.2708 0.2186 0.1432 0.3798 0.3294 0.2172 0.1659
LL 0.2201 0.1744 -0.0334 -0.0736 0.2518 0.2125 -0.0156 -0.0343
FV 0.0519 0.0321 -0.1420 -0.1578 0.1228 0.1122 -0.1081 -0.1100

Baselines. We compare our proposed method — NCk in
Equation (7) — against the following widely-recognized
baseline methods:

• Distk [Tack et al., 2020, Mirzaei et al., 2022]: the aver-
age of the k minimum distances from the test point to
the reference data in the representation space. A lower
value of Distk indicates higher reliability.

• Norm [Tack et al., 2020]: the L2 norm of the repre-
sentation ∥h(x∗)∥2. A higher value of Norm indicates
higher reliability.

• LL [Ardeshir and Azizan, 2022]: the log-likelihood
of the Gaussian (Rd) or von Mises–Fisher [Banerjee
et al., 2005] (Sd−1) mixture models on the test point
when fitted on the reference data. A higher value of LL
indicates higher reliability.

• Feature Variance (FV): representation consistency mea-
sured by Vari∼[M ] (hi(x

∗)), as described in Theo-
rem 1. FV is extended from UQ in supervised learning.
Specifically, the variance of neural networks’ predicted
scores is often used to measure epistemic uncertainty
[Kendall and Gal, 2017, Lakshminarayanan et al., 2017,
Ritter et al., 2018]. Here we apply this measure to ex-
amine latent representation spaces. A lower value of
FV indicates higher reliability.

All baselines, except FV, are based on a single embedding
function. For a fair comparison, we consider the (point-wise)
ensemble average of each score over different embedding
functions for Distk, Norm, and LL.

Hyperparameters. To reduce the computational cost, we
randomly select n = 5, 000 pre-training data as the refer-
ence dataset Xref. We repeat our experiments 5 times with
distinct random seeds for choosing reference data and report
the average evaluation scores. Since the standard deviations
of our scores are on average below 1%, we defer the ex-
perimental results with error bars to Appendix. We choose
k = 100 for NCk and k = 1 for Distk (see Section 4.5 for
an ablation study about the choice of k).

For our method and Distk, we test both cosine distance
and Euclidean distance as options for distance metric. In a
similar manner, LL and FV are evaluated using both un-
normalized h(x) ∈ Rd and normalized representations
h(x)/∥h(x)∥2 ∈ Sd−1. A discussion on the implications
of these selections is provided in Section 4.5. Given the
space limits, the results using normalized representations
are reported in the main manuscript, while those using un-
normalized representations are detailed in Appendix C.2.

Evaluation Protocol. To evaluate the effectiveness of our
method (i.e., NC100) in capturing the representation reliabil-
ity (Definition 1) and to compare it against baselines4, we
use Kendall’s τ coefficient to measure the correlation be-
tween each method and the representation reliability (Reli).
We compute the downstream performance (Perf) on each
test point by using either 1) the negative predictive entropy,
capturing downstream uncertainty; or 2) the negative Brier
score, reflecting predictive accuracy. The computation de-

4We use the negative scores of Distk and FV since their lower
values indicate higher reliability.



tails are provided in Appendix B.

We focus on downstream classification tasks. For each task,
we freeze the pre-trained model and fine-tune the linear
heads. To leverage the multi-class labels and minimize the
influence from the downstream training processes, we break
down each C-class classification into a set of one-vs-one
(OVO) binary classification tasks. As a result, the total num-
ber of downstream tasks is |T | = C(C − 1)/2, with each
data point being evaluated in (C − 1) tasks. Finally, we
average the performance across all OVO tasks to compute
the representation reliability. We defer the results for the
multi-class downstream tasks to Appendix C.1.

4.2 MAIN RESULTS

4.2.1 Correlation to ID Downstream Performance

Recall that the representation reliability relies on down-
stream tasks. Here we focus on in-distribution (ID) tasks
where embedding functions are pre-trained on CIFAR-10
or CIFAR-100 datasets [Krizhevsky et al., 2009] without
using any labeling information. Subsequently, they are fine-
tuned with a linear head on the same dataset.

Table 1 shows that our NC100 demonstrates a higher cor-
relation with the representation reliability compared with
baselines. Notably, regardless with the choice of the pre-
training configurations or downstream tasks, our method
always has a positive correlation whereas baselines occa-
sionally demonstrates very low or even negative correlation.
Moreover, FV presents low correlation and this observation
aligns with the theoretical results in Section 3.2.

We offer insight into why NCk has a more favorable perfor-
mance compared with baselines. Imagine a test point (a fox
image) has unreliable representations. It sits close to a refer-
ence point A (a dog image) and far from another point B (a
cat image) in one representation space, while the opposite
holds true in another representation space. In this case, NCk

would assign a low score due to this inconsistency. However,
Distk, LL, and Norm suggest “reliable” since they rely on
the relative distance of the test point to the closest reference
point (or to the origin). FV may also indicate “reliable” if
the representations of the test point remain consistent de-
spite falling into clusters of dog or cat images in different
representation spaces. None of these baselines align differ-
ent representation spaces before computing these relative
distances.

4.2.2 Correlation to Transfer Learning Performance

We conduct experiments with out-of-distribution tasks, par-
ticularly focusing on transfer learning tasks. We use the
TinyImagenet dataset [Le and Yang, 2015] as the source
dataset for pre-training the embedding functions. Subse-

quently, we fine-tune and evaluate the embedding func-
tions on three target datasets: CIFAR-10, CIFAR-100,
and STL-10 [Coates et al., 2011]. The correlation between
each method and the representation reliability is reported in
Table 2. As observed, NC consistently captures the repre-
sentation reliability across a diverse range of settings.

We observe that Norm achieves comparable performance
with NC. One possible explanation is that several factors
(e.g., properties of embedding functions and characteristics
of test points) influence the reliability of a test point’s rep-
resentation. In the context of transfer learning, OOD test
points are more likely to be unreliable. The baseline we
selected, Norm, is good at identifying OOD samples [Tack
et al., 2020], thereby enabling it to capture representation
reliability to some extent.

4.3 USE CASE: RANK PRE-TRAINED MODELS

In practice, there are typically several off-the-shelf pre-
training models available for downstream tasks. These mod-
els may vary in architecture and are trained using different
learning paradigms, making it challenging to decide which
one to use. We apply our NC100 to aid in this selection
process by ranking these models based on their average
reliability scores. We extend the previous experiments on
transfer learning scenarios as follows. For each data point,
we rank the three pre-training models (SimCLR, BYOL,
and MoCo) using NC100 and baselines, respectively. Then
we compute the correlation between these rankings and the
actual ranking (based on average downstream tasks perfor-
mance) by computing Kendall’s τ coefficient score between
the two rankings. We present the experimental results in
Table 3.

Our NC demonstrates the second-best performance for
ResNet-18 and the best performance for ResNet-50. In con-
trast, the baselines (Dist1, Norm, and LL) exhibit negative
scores when ranking embedding functions. The only excep-
tion is FV which achieves a comparable performance with
NC, while demonstrating a low (or even negative) corre-
lation in the previous experiments (Tables 1 and 2). One
possible interpretation is that the primary issue with FV lies
in its failure to align different representation spaces before
comparing them. When ranking different embedding func-
tions, the degrees of misalignment between their ensembles
should roughly be of the same order, as these embedding
functions share the same architecture. Consequently, this
error term would cancel out when ranking these embedding
functions.

4.4 QUANTIFYING THE RELIABILITY OF
INDIVIDUAL EMBEDDING FUNCTIONS

Our NC requires a set H of embedding functions, comparing
the consistent neighbors of a test point across the represen-



Table 2: Comparison of our neighborhood consistency (NC100) with baseline methods in terms of their correlation with the
representation reliability. Here the downstream tasks are transfer learning tasks, where embedding functions are pre-trained
on TinyImagenet and fine-tuned on CIFAR-10, CIFAR-100, and STL-10.

Pretraining
Algorithms Method

ResNet-18 ResNet-50
TinyImagenet → TinyImagenet →

CIFAR-10 CIFAR-100 STL-10 CIFAR-10 CIFAR-100 STL-10
Entropy Brier Entropy Brier Entropy Brier Entropy Brier Entropy Brier Entropy Brier

SimCLR

NC100 0.1729 0.1292 0.1680 0.1343 0.2176 0.1513 0.1224 0.0804 0.1467 0.1194 0.1866 0.1169
Dist1 0.1311 0.0933 0.0138 -0.0251 0.1098 0.0520 0.0894 0.0531 -0.0246 -0.0627 0.0340 -0.0167
Norm 0.2124 0.1642 0.1220 0.0507 0.1641 0.0852 0.1549 0.1098 0.0895 0.0177 0.0608 -0.0056
LL 0.0369 0.0168 -0.0991 -0.1269 0.0205 -0.0180 0.0225 0.0027 -0.1192 -0.1443 -0.0149 -0.0495
FV -0.0919 -0.0779 -0.1660 -0.1668 -0.1872 -0.1593 -0.1078 -0.0878 -0.1867 -0.1840 -0.2178 -0.1829

BYOL

NC100 0.2557 0.1431 0.2352 0.1525 0.0374 0.0232 0.2561 0.1258 0.2600 0.1005 0.1410 0.0123
Dist1 -0.1458 -0.0923 -0.2716 -0.1525 -0.2893 -0.2178 -0.1885 -0.1274 -0.3075 -0.1679 -0.2371 -0.1925
Norm 0.1483 0.0749 0.1879 0.1315 0.1021 0.0772 0.1620 0.0918 0.1082 0.0816 0.0963 0.0380
LL -0.2106 -0.1248 -0.3418 -0.2006 -0.3319 -0.2472 -0.3130 -0.1763 -0.3671 -0.1797 -0.3235 -0.2002
FV -0.1386 -0.0713 -0.1874 -0.1202 -0.1171 -0.0790 -0.1668 -0.0737 -0.1441 -0.0705 -0.0584 0.0205

MoCo

NC100 0.1880 0.1313 0.1797 0.1446 0.2263 0.1463 0.1927 0.1300 0.1962 0.1560 0.2170 0.1433
Dist1 0.1213 0.0718 0.0311 -0.0143 0.0993 0.0223 0.1751 0.1109 0.0759 0.0257 0.1696 0.0710
Norm 0.1930 0.1355 0.1321 0.0531 0.1327 0.0443 0.2503 0.1803 0.1838 0.1034 0.2524 0.1524
LL 0.0158 -0.0082 -0.1046 -0.1386 -0.0083 -0.0577 0.0458 0.0145 -0.0916 -0.1239 0.0133 -0.0502
FV -0.0793 -0.0701 -0.1499 -0.1658 -0.1615 -0.1577 -0.0560 -0.0400 -0.1510 -0.1578 -0.1735 -0.1577

Table 3: Comparison of our NC100 with baselines in selecting reliable backbones among those pre-trained by three algorithms
(SimCLR, BYOL, and MOCO) on the TinyImagenet dataset. For each test point within the CIFAR-10, CIFAR-100,
and STL-10 datasets, we calculate Kendall’s τ coefficient to evaluate the correlation between the rankings given by each
method and the rankings given by the actual downstream performance.

Method

ResNet-18 ResNet-50
TinyImagenet → TinyImagenet →

CIFAR-10 CIFAR-100 STL-10 CIFAR-10 CIFAR-100 STL-10
Entropy Brier Entropy Brier Entropy Brier Entropy Brier Entropy Brier Entropy Brier

NC100 0.4841 0.4625 0.4211 0.4199 0.2342 0.3073 0.5051 0.5089 0.4865 0.4912 0.4512 0.4385
Dist1 -0.3328 -0.3621 -0.2863 -0.3364 -0.0457 -0.1729 -0.3552 -0.4181 -0.3196 -0.3869 -0.2162 -0.2719
Norm -0.3199 -0.3543 -0.2619 -0.3198 -0.0342 -0.1654 -0.3543 -0.4175 -0.3172 -0.3851 -0.2154 -0.2712
LL -0.3259 -0.3575 -0.2776 -0.3296 -0.0430 -0.1692 -0.3615 -0.4220 -0.3333 -0.3963 -0.2228 -0.2764
FV 0.8988 0.7348 0.8321 0.6624 0.7027 0.6186 0.3568 0.2891 0.2207 0.1468 0.2738 0.2130

tation spaces generated by these functions. When H has a
single function h, we can still use our NC by applying the
same learning algorithm (with varying random seeds) and
data used to train h, yielding additional embedding func-
tions to augment H. The rationale behind this is that these
embedding functions will possess similar inductive biases
and generate representation spaces with comparable relia-
bility. We validate this intuition in Table 10 and Table 11 in
Appendix C. The results demonstrate that we can effectively
predict the reliability of individual embedding functions
using this approach.

4.5 ABLATION STUDIES

Robustness to the Choice of Distance Metric. We ex-
plore how various distance metrics within the representation
space affect both our method and the baseline approaches.
While Euclidean distance is a natural choice for the repre-

sentations in Rd, we also investigate cosine distance. This
choice is motivated by the widespread use of cosine similar-
ity in self-supervised algorithms, such as SimCLR, within
their loss functions.

We present the results in Table 6 and 9 in Appendix C.2.
Our key observation is: the baselines, including Dist1 and
LL, are sensitive to the choice of distance metric and may
even exhibit negative correlations with the representation
reliability. In contrast, NC100 consistently demonstrates a
positive correlation and ranks within the top 2 among all
baseline methods, regardless of the distance metric chosen.

Performance with a Smaller Ensemble Size (M ). We
conduct an ablation study to investigate the impact of ensem-
ble size M on estimating the representation reliability. The
results in Figure 2(a) and 2(b) and Appendix C show that
increasing ensemble size improves the correlation scores.
Nonetheless, our method generally outperforms baseline



approaches, even with a small ensemble size of M = 2. Ex-
ploring cost-effective ensemble construction methods, such
as low-rank approximations [Wen et al., 2020] or stochas-
tic weight averaging [Izmailov et al., 2018, Maddox et al.,
2019], can be a promising future direction.

Trade-off on the Number of Neighbors (k). As dis-
cussed in Section 3.3, the choice of k in Equation (7) leads
to a trade-off between having more consistent neighbors and
preserving the overall reliability of those neighbors. In order
to explore this trade-off, we conduct experiments with differ-
ent values of k ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}.
The correlation between our method and the representa-
tion reliability is illustrated in Figure 2(c) and 2(d) and
Appendix C: it initially increases and then decreases as ex-
pected. We observe that the optimal performance could be
achieved with k around 100 (i.e., 2% of |Xref| = 5000) for
NCk across different pre-training algorithms, model archi-
tectures, and downstream data.

4.6 KEY OBSERVATIONS & TAKEAWAYS

In summary, our main findings from the experiments are:

• Our proposed method NCk effectively captures the repre-
sentation reliability and can help compare the reliability
of different pre-trained models.

• More importantly, contrary to the baselines, NCk consis-
tently exhibits a positive correlation with the represen-
tation reliability across all different settings. Although
the baselines may occasionally surpass NCk, their per-
formance fluctuates significantly across different settings
and sometimes becomes even negative, introducing a risk
when used to assess reliability in safety-critical settings.

5 FINAL REMARKS AND LIMITATIONS

Self-supervised learning is increasingly used for training
general-purpose embedding functions that can be adapted
to various downstream tasks. In this paper, we presented a
systematic study to evaluate the quality of representations as-
signed by the embedding functions. We introduced a mathe-
matical definition of representation reliability, demonstrated
that existing UQ frameworks in supervised learning cannot
be directly applied to estimate uncertainty in representation
spaces, derived an estimate for the representation reliabil-
ity, and validated our estimate through extensive numerical
experiments.

There is a crucial need for future research to investigate and
ensure the responsibility and trustworthiness of pre-trained
self-supervised models. For example, representations should
be interpretable and not compromise private information.
Moreover, the embedding functions should exhibit robust-
ness against adversarial attacks and incorporate a notion of

(a) (b)

(c) (d)

Figure 2: Ablation studies on the ensemble size (M ) and
the number of neighbors (k) for NCk (ours) and baselines.
Brier score is used for the downstream performance metric.
The comprehensive results can be found in Appendix C.

uncertainty, in addition to their abstract representations. This
work takes an initial step towards understanding the uncer-
tainty of the representations. In the case where a downstream
model fails to deliver a desirable output for a test point, the
representation reliability can provide valuable insight into
whether the mistake is due to unreliable representations or
downstream heads.

There are several future directions that are worth further
exploration. For example, our current method for estimat-
ing the representation reliability uses a set of embedding
functions to compute neighborhood consistency. It would
be interesting to investigate whether our approach can be
expanded to avoid the need for training multiple embedding
functions. This could potentially be achieved through tech-
niques such as MC dropout or adding random noise to the
neural network parameters in order to perturb them slightly.
Additionally, while we currently assess the representation
reliability through downstream prediction tasks, it would
be valuable to investigate the extension of our definition to
cover a broader range of downstream tasks.
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Figure 3: Graphical visualization of the sketch for the proof of Theorem 2. Let Zi and Zj denote the representation spaces
defined by the embedding functions hi and hj , respectively. Suppose that there is a reliable neighboring point xr that is
located close to the test point x∗ in each representation space. For any downstream task t, a reliable neighboring point xr

serves as an anchor for comparing different representations z∗
i = hi(x

∗) and z∗
j = hj(x

∗) of the test point x∗. The key
idea is that y∗i,t and y∗j,t — the downstream predictions on the test point using the two different embedding functions —
should be similar because the predictions y∗i,t and yri,t as well as yrj,t and y∗j,t are similar due to the Lipschitz continuity of
the downstream predictors. Additionally, since xr is a reliable point, the predictions yri,t and yrj,t are similar. Thus, it follows
that y∗i,t and y∗j,t are similar as well.

A THEORETICAL RESULTS AND OMITTED PROOFS

A.1 PROOF OF THEOREM 1

We present a more rigorous statement of Theorem 1 along with its proof.

Theorem 3. Consider downstream tasks as prediction tasks, with the class of downstream heads closed under linear
transformations (i.e., if g belongs to this class, g◦A also belongs to it for any matrix A). Let diam(Z) = supz,z′∈Z ∥z−z′∥2
be the diameter of the representation space. Then for any A < (diam(Z)/2)2 and a test point x∗, there exist embedding
functions h1, · · · , h2M ∈ H such that Vari∼[2M ] (hi(x

∗)) ≥ A but Vari∼[2M ] (gi,t ◦ hi(x
∗)) = 0 for any downstream task

t, where gi,t is an optimal downstream head for hi under task t.

Proof. We prove this theorem via construction, assuming that there are only two embedding functions h1, h2, without loss
of generality. Let δ > 0 be a small constant. We select two points z1, z2 ∈ Z such that ∥z1 − z2∥2 ≥ diam(Z)− δ. Then
we define h1 and h2 to satisfy the condition: hi(x

∗) = zi and h1 = A ◦ h2 where A is an invertible matrix. Consequently,

Vari∼[2] (hi(x
∗)) =

∥∥∥∥z1 − z2
2

∥∥∥∥2
2

≥
(
diam(Z)− δ

2

)2

.

For a given task t, let g1,t be an optimal downstream head for the embedding function h1. Next, we prove that g1,t ◦A
is an optimal downstream head for h2 under the same task. Suppose otherwise, if there exists another downstream head
g′2,t achieving higher performance than g1,t ◦A when combined with h2. Since h1 = A ◦ h2, it implies g′2,t ◦A−1 can
achieve higher performance than g1,t when combined with h1. This contradicts the optimally of g1,t. Therefore, g1,t ◦A is
an optimal downstream head for h2 for task t so we denote it as g2,t. Now, we have

g2,t ◦ h2(x
∗) = g1,t ◦A ◦ h2(x

∗) = g1,t ◦A ◦A−1 ◦ h1(x
∗) = g1,t ◦ h1(x

∗),

which leads to Vari∼[2] (gi,t ◦ hi(x
∗)) = 0. As δ can be chosen arbitrarily small, we can achieve the desired result. By

setting h2i−1(x
∗) = z1 and h2i(x

∗) = z2, the same proof can be extended to the case of 2M case.



A.2 PROOF OF THEOREM 2

Proof. For the sake of notational simplicity, we denote fi = gi,t ◦ hi. When gi,t is Lipschitz continuous (see Appendix A.3
for more detail) and Equation (5) — ∥hi(x

r)− hi(x
∗))∥2 ≤ ϵnb — holds, we have:

∥fi(xr)− fi(x
∗)∥2 ≤ Li,t · ∥hi(x

r)− hi(x
∗)∥2 ≤ Li,t · ϵnb ≤ Lt · ϵnb , ∀i ∈ [M ]. (8)

By the triangle inequality, we have the following upper bound for the output difference:

∥fi(x∗)− fj(x
∗)∥22 ≤

(
∥fi(x∗)− fi(x

r)∥2 + ∥fi(xr)− fj(x
r)∥2 + ∥fj(xr)− fj(x

∗)∥2
)2

≤
(
Ltϵnb + ∥fi(xr)− fj(x

r)∥2 + Ltϵnb
)2

= 4
(
Ltϵnb

)2
+ 4

(
Ltϵnb

)
∥fi(xr)− fj(x

r)∥2︸ ︷︷ ︸
L2 difference

+ ∥fi(xr)− fj(x
r)∥22︸ ︷︷ ︸

L2-squared difference

. (9)

Note that the ensemble variance is proportional to the average pairwise L2-squared difference across the ensemble of fi:

Vari∼[M ] (gi,t ◦ hi(x
∗)) =

1

M2

∑
i<j

∥fi(x∗)− fj(x
∗)∥22 (10)

Vari∼[M ] (gi,t ◦ hi(x
r)) =

1

M2

∑
i<j

∥fi(xr)− fj(x
r)∥22 ≡ σ2

r,t. (11)

Furthermore, by Cauchy-Schwarz inequality, the average pairwise L2 difference is bounded by:

1

M2

∑
i<j

∥fi(xr)− fj(x
r)∥2 ≤ 1

M2

(∑
i<j

∥fi(xr)− fj(x
r)∥22

)1/2

·
(∑
i<j

1
)1/2

≤ 1

M2

(
Mσr,t

)
·
(M(M − 1)

2

)1/2

≤
√
2

2
σr,t (12)

Thus:

Vari∼[M ] (gi,t ◦ hi(x
∗)) =

1

M2

∑
i<j

∥fi(x∗)− fj(x
∗)∥22

≤
( 1

M2

)(M(M − 1)

2

)(
4
(
Ltϵnb

)2)
+ 2

√
2
(
Ltϵnb

)
σr,t + σ2

r,t

≤
(√

2Ltϵnb

)2

+ 2
√
2Ltϵnbσr,t + σ2

r,t

=
(√

2Ltϵnb + σr,t

)2

. (13)

The reader is referred to Figure 3 for a visualization accompanying the proof sketch.

A.3 LIPSCHITZ CONTINUITY OF NEURAL NETWORKS

Lemma 1. For a fully-connected layer gl(z) = a(wT
l z + bl) of downstream predictor, the similarity of outputs is bounded

above by the Lipschitz continuity:
∥gl(z)− gl(z

∗)∥2 ≤ ∥wl∥2 · ∥z − z∗∥2. (14)

Proof. Suppose a(·) is 1-Lipschitz continuous (e.g., identity, ReLU, sigmoid, and softmax) ,

∥gl(z)− gl(z
∗)∥2 = ∥a

(
wT

l z + bl
)
− a

(
wT

l z
∗ + bl

)
∥2

≤ 1 · ∥
(
wT

l z + bl
)
−
(
wT

l z
∗ + bl

)
∥2

= ∥wT
l

(
z − z∗)∥2

≤ ∥wl∥2 · ∥z − z∗∥2. (15)

where ∥·∥2 is the spectral norm for a matrix and L2 norm for a vector.



Corollary 1. For a feed-forward neural networks, g = g1 ◦ g2 ◦ ... ◦ gL, composed of multiple fully-connected layers, the
similarity of predictions at x and x∗ is bounded above by:

∥g(x)− g(x∗)∥2 ≤ Lt · ∥x− x∗∥2. (16)

where Lt = ∥w1∥2 · ∥w2∥2 · · · ∥wL∥2 is a Lipschitz constant for g.

A.4 DOES THE ABSENCE OF CONSISTENT NEIGHBORS IMPLY UNRELIABILITY?

Starting with the conclusion, the justification holds when the downstream predictors are bi-Lipschitz continuous and the
reference points are reliable. Below is a more detailed justification.

Assume that the downstream predictors are bi-Lipschitz continuous (i.e., it is Lipschitz continuous and has an inverse
mapping which is also Lipschitz continuous) and that the reference points are reliable. Consider a test point x∗ that does not
have any consistent neighboring points.

There are two cases. First, the test point has no neighboring point at all. This implies that the test point is out-of-distribution
from the distribution of reference points [Tack et al., 2020]. As OOD points are more likely to be unreliable, the test point is
more likely to be unreliable as well.

The second case is when the test point has neighboring points, but they are not consistent. Consider any pair of embedding
functions, h1, h2 ∈ H. Denote the representation spaces constructed by each function as Z1 and Z2, respectively. Let’s say
x∗ is close to the reference point A (i.e., xa) within Z1 and is close to the other reference point B (i.e., xb) within Z2:

∥h1(x
a)− h1(x

∗))∥2 ≤ ϵnb, ∥h2(x
b)− h2(x

∗))∥2 ≤ ϵnb. (17)

Suppose the test point is reliable. In the following proof, we assume a stronger form of reliability as follows:

∥gi,t ◦ hi(x)− gj,t ◦ hj(x)∥2 = ∥fi(x)− fj(x)∥2 ≤ σt(x) , ∀i, j ∈ [M ] (18)

where gi and gj are bi-Lipschitz continuous downstream predictors for hi and hj . σt(x) is reliability of x measured
by maximum prediction deviation across the ensemble on the downstream task t. From the definition, the downstream
predictions on x∗, xa, and xb will have consistent predictions across the embedding functions

∥f1(x∗)− f2(x
∗)∥2 ≤ σ∗

t (19)
∥f1(xa)− f2(x

a)∥2 ≤ σa
t (20)

∥f1(xb)− f2(x
b)∥2 ≤ σb

t (21)

where we denote the reliability of each point as: σt(x
∗) = σ∗

t , σt(x
a) = σa

t , and σt(x
b) = σb

t , respectively.

By Lipschitz continuity,

∥f1(xa)− f1(x
∗)∥2 ≤ Lt · ϵnb (22)

∥f2(xb)− f2(x
∗)∥2 ≤ Lt · ϵnb. (23)

By the triangle inequality, we have the following upper bound for the output difference between the reference points:

∥f1(xa)− f1(x
b)∥2 ≤ ∥f1(xa)− f1(x

∗)∥2 + ∥f1(x∗)− f2(x
∗)∥2 + ∥f2(x∗)− f2(x

b)∥2 + ∥f2(xb)− f1(x
b)∥2

≤ σ∗
t + σb

t + 2Lt · ϵnb. (24)

By bi-Lipschitz continuity, ∥h1(x
a)− h1(x

b)∥2 is bounded above; i.e., the reference points A and B are close to each other
within both Z1:

∥h1(x
a)− h1(x

b)∥2 ≤ L′
t · ∥f1(xa)− f1(x

b)∥2 ≤ L′
t · (σ∗

t + σb
t + 2Lt · ϵnb) (25)

where L′
t = maxi L

′
i,t is a bi-Lipschitz constant. Hence:

∥h1(x
b)− h1(x

∗)∥2 ≤ ∥h1(x
b)− h1(x

a)∥2 + ∥h1(x
a)− h1(x

∗)∥2 ≤ L′
t · (σ∗

t + σb
t + 2Lt · ϵnb) + ϵnb. (26)

Without loss of generality, ∥h2(x
a) − h2(x

∗)∥2 ≤ L′
t · (σ∗

t + σa
t + 2Lt · ϵnb) + ϵnb. Thus, the point B is also close to

x∗ within Z1 while the point A is also close to x∗ within Z2. In other words, the reference points A and B are consistent
neighboring points of the test point x∗, which contradicts the assumption that it does not have any consistent neighboring
points.

In conclusion, the test point is unreliable in either case. Therefore, when a test point x∗ that does not have any consistent
neighboring points, the test point is unreliable.



B COMPUTING REPRESENTATION RELIABILITY

Recall that the representation reliability is defined by:

Reli(x∗;H, T ) ≜
∑

t∈T
Perft (gh,t ◦ h, x∗) / |T |

where T is the collection of downstream tasks and for each task t ∈ T , an embedding function h is taken uniformly at
random from H and a downstream predictor gh,t is (optimally) trained upon h on t. In this section, we provide some
examples to compute representation reliability using standard uncertainty or accuracy measures using an ensemble of
embedding functions {h1, · · · , hM} and the corresponding downstream predictors {g1,t, · · · , gM,t}.

Let’s denote this distribution of h: PH. Consequently, in regression tasks, the negative variance of the predictive distribution
can be utilized for a performance metric:

Perft (gh,t ◦ h, x∗) := −Var (gh,t ◦ h(x∗))

= −Eh∼PH

[
(gh,t ◦ h(x∗)− Eh∼PH

[
gh,t ◦ h(x∗)

]
)2
]

≈ − 1

M2

∑
i<j

(
gi,t ◦ hi(x

∗)− gj,t ◦ hj(x
∗)
)2

(27)

where gi,t ≡ ghi,t. In the context of multi-output tasks, the trace of the covariance matrix can be utilized, which is essentially
the sum of variances across each output dimension. This approach aggregates the individual uncertainties of each output,
providing a comprehensive measure of overall uncertainty in the multi-output setting.

While our theoretical analysis has focused on regression tasks using variance, for classification tasks, metrics like the Brier
score or entropy are more natural choices. For a given downstream classification task t with C classes, the ground truth label
of x∗ is represented by a one-hot vector: y∗t = (y∗t[1], · · · , y

∗
t[C])

T where y∗t[c] ∈ {0, 1}. The softmax output for class c via
the predictive function gi ◦ hi(·) is denoted as gi ◦ hi(·)[c].

The negative Brier score for this setup is calculated as follows:

Perft (gh,t ◦ h, x∗) := −Brier(Eh∼PH

[
gh,t ◦ h(x∗)

]
; y∗t )

= −
C∑

c=1

(
Eh∼PH

[
gh,t ◦ h(x∗)

]
[c]

− y∗t[c]

)2

(28)

− ≈
C∑

c=1

( 1

M

M∑
i=1

gi,t ◦ hi(x
∗)[c] − y∗t[c]

)2

(29)

and the negative entropy is given by:

Perft (gh,t ◦ h, x∗) := −Entropy(Eh∼PH

[
gh,t ◦ h(x∗)

]
)

≈
C∑

c=1

( 1

M

M∑
i=1

gi,t ◦ hi(x
∗)[c]

)
log

( 1

M

M∑
i=1

gi,t ◦ hi(x
∗)[c]

)
. (30)

While establishing a rigorous relationship between uncertainty and predictive accuracy may pose challenges, empirical
studies have demonstrated a strong correlation between the two measures. As stated in Theorem 2, a lower bound of
the representation reliability measured by Perft (·) := −Var (·), depicted in Equation (27), is assured by the sum of the
reference point’s reliability along with its relative distance to the test point. Consequently, this explains how the NC score
could effectively capture representation reliability, irrespective of the specific performance metrics employed.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 MULTI-CLASS DOWNSTREAM CLASSIFICATION TASKS

As noted in Section 4.1, our evaluation protocol employs one-vs-one (OVO) binary classification tasks for downstream
evaluation. While it is intuitively plausible that the average performance across OVO tasks correlates well with that of



multi-class classification tasks, we undertake empirical studies on the original multi-class setups to validate this assumption.
The key distinction from the original protocol is that, the number of tasks is just one (i.e., |T | = 1) and the output size
for the linear heads corresponds to the number of classes C. For CIFAR-10 and STL-10 datasets, C = 10 class labels
are used, while CIFAR-100 uses C = 20 coarse (i.e., superclass) labels. The outcomes, presented in Table 5, exhibit a
consistent trend with previous observations.

C.2 PERFORMANCE WITH UNNORMALIZED REPRESENTATION

In addition to the result presented in Table 1 (ID) and Table 2 (Transfer), we further explore the efficacy of our method with
unnormalized representation (e,g., Euclidean distance instead of cosine distance). We also include the standard deviation
resulting from the randomness involved in selecting the reference dataset. As indicated by the results in Table 6 (ID), Table 9
(Transfer), our method exhibits consistent and strong performance, even when utilizing unnormalized representation.

On the other hand, the baseline methods suffer from a significant performance reduction when paired with Euclidean
distance. Our conjecture is as follows: as noted in our results and Tack et al. [2020], points with a larger L2-norm tend to
exhibit higher reliability. This implies that reliable points are often located in the outer regions of the representation space,
resulting in larger distances between points in those regions compared to points near the origin. This observation , however,
contradicts to the Dist1 and FV’s expectations (i.e., smaller value is presumed to indicate higher reliability). As a result,
those measures on the unnormalized representations struggle to accurately reflect reliability, potentially indicating negative
correlations that defy their assumptions.

C.3 ABLATION STUDIES

In addition to the exemplary results in the main manuscript, we further provide the ablation results in Figure 4 (M ) and
Figure 5 (k). These ablation results cover various combinations of pre-training algorithms, model architectures, and datasets.
Brier score is used for the downstream performance metric.

C.4 QUANTIFYING THE RELIABILITY OF INDIVIDUAL EMBEDDING FUNCTIONS

To confirm whether the NC score can also be applied to gauge the reliability of the individual embedding function h ∈ H, we
measured the correlation between the measures and the representation reliability estimated with Brier score (i.e., downstream
accuracy), for each member of the ensemble. The results, detailed in Table 10 and Table 11, include the average correlation
and its standard deviation across the individuals. Since metrics such as Dist1, norm, and LL are inherently applicable to
individual embedding functions without using the ensemble, we also report non-ensemble scores as well, marked with a
superscript star (*).



Table 4: Comparison on the correlation between our neighborhood consistency (NC100) and baseline methods in relation to
performance on in-distribution downstream tasks.

Pretraining
Algorithms Method

ResNet-18
CIFAR-10 CIFAR-100

Entropy Brier Entropy Brier

SimCLR

NC100 0.3865 ± 0.0024 0.3262 ± 0.0022 0.3130 ± 0.0031 0.2590 ± 0.0028

Dist1 0.3021 ± 0.0063 0.2544 ± 0.0051 0.0757 ± 0.0084 0.0635 ± 0.0075

Norm 0.2907 0.2429 0.1198 0.0649
LL 0.1797 ± 0.0078 0.1356 ± 0.0068 -0.0989 ± 0.0063 -0.1067 ± 0.0056

FV -0.0476 -0.0458 -0.1891 -0.1710

BYOL

NC100 0.2749 ± 0.0049 0.1826 ± 0.0030 0.2354 ± 0.0048 0.1753 ± 0.0042

Dist1 0.0322 ± 0.0029 0.0385 ± 0.0018 -0.1477 ± 0.0045 -0.0709 ± 0.0031

Norm 0.0725 0.0235 0.1659 0.1231
LL -0.0539 ± 0.0010 -0.0196 ± 0.0006 -0.2637 ± 0.0052 -0.1650 ± 0.0045

FV 0.1439 0.1003 -0.1727 -0.1284

MoCo

NC100 0.4157 ± 0.0042 0.3653 ± 0.0038 0.3632 ± 0.0019 0.3128 ± 0.0024

Dist1 0.3523 ± 0.0048 0.3093 ± 0.0037 0.2246 ± 0.0056 0.1925 ± 0.0070

Norm 0.3238 0.2708 0.2186 0.1432
LL 0.2201 ± 0.0108 0.1744 ± 0.0111 -0.0334 ± 0.0052 -0.0736 ± 0.0038

FV 0.0519 0.0321 -0.1420 -0.1578

Pretraining
Algorithms Method

ResNet-50
CIFAR-10 CIFAR-100

Entropy Brier Entropy Brier

SimCLR

NC100 0.3786 ± 0.0013 0.3206 ± 0.0014 0.3070 ± 0.0040 0.2516 ± 0.0036

Dist1 0.2750 ± 0.0052 0.2376 ± 0.0044 0.1100 ± 0.0060 0.0919 ± 0.0061

Norm 0.2789 0.2385 0.1311 0.0710
LL 0.1700 ± 0.0088 0.1348 ± 0.0073 -0.0831 ± 0.0036 -0.0959 ± 0.0032

FV -0.0402 -0.0393 -0.1984 -0.1870

BYOL

NC100 0.3524 ± 0.0028 0.2131 ± 0.0014 0.3233 ± 0.0061 0.1733 ± 0.0039

Dist1 -0.1858 ± 0.0022 -0.1442 ± 0.0010 -0.3124 ± 0.0019 -0.1598 ± 0.0014

Norm 0.1990 0.1184 0.1990 0.1476
LL -0.2542 ± 0.0047 -0.1784 ± 0.0035 -0.3777 ± 0.0018 -0.2018 ± 0.0013

FV 0.0676 0.0524 -0.0213 -0.0625

MoCo

NC100 0.3757 ± 0.0041 0.3236 ± 0.0038 0.2667 ± 0.0043 0.2225 ± 0.0028

Dist1 0.3831 ± 0.0032 0.3397 ± 0.0027 0.2453 ± 0.0051 0.2183 ± 0.0054

Norm 0.3798 0.3294 0.2172 0.1659
LL 0.2518 ± 0.0073 0.2125 ± 0.0073 -0.0156 ± 0.0062 -0.0343 ± 0.0054

FV 0.1228 0.1122 -0.1081 -0.1100



Table 5: Comparison on the correlation between our neighborhood consistency (NC100) and baseline methods in relation
to performance on in-distribution downstream tasks, for the multi-class downstream classification tasks. Our approach
consistently demonstrates strong performance when compared to baseline methods, similar to the results observed when
using the OVO binary classification tasks, as shown in Table 4.

Pretraining
Algorithms Method

ResNet-18
CIFAR-10 CIFAR-100

Entropy Brier Entropy Brier

SimCLR

NC100 0.3848 ± 0.0016 0.3202 ± 0.0019 0.2998 ± 0.0051 0.2166 ± 0.0030

Dist1 0.3025 ± 0.0079 0.2533 ± 0.0055 0.0641 ± 0.0070 0.0698 ± 0.0072

Norm 0.3098 0.2462 0.1725 0.0467
LL 0.1953 ± 0.0092 0.1469 ± 0.0073 -0.0863 ± 0.0062 -0.0668 ± 0.0049

FV -0.0485 -0.0357 -0.1755 -0.1358

BYOL

NC100 0.3375 ± 0.0047 0.1431 ± 0.0030 0.3116 ± 0.0056 0.0957 ± 0.0034

Dist1 0.0466 ± 0.0028 0.0540 ± 0.0021 -0.2296 ± 0.0042 0.0093 ± 0.0034

Norm 0.1723 0.0261 0.2030 0.0808
LL -0.0684 ± 0.0020 0.0098 ± 0.0009 -0.3830 ± 0.0052 -0.0496 ± 0.0031

FV 0.1620 0.0621 -0.2077 -0.0791

MoCo

NC100 0.3972 ± 0.0039 0.3451 ± 0.0034 0.3519 ± 0.0019 0.2619 ± 0.0034

Dist1 0.3267 ± 0.0060 0.2903 ± 0.0036 0.1942 ± 0.0048 0.1669 ± 0.0067

Norm 0.3177 0.2626 0.2273 0.1046
LL 0.2080 ± 0.0125 0.1712 ± 0.0118 -0.0628 ± 0.0044 -0.0657 ± 0.0028

FV 0.0541 0.0401 -0.1534 -0.1386

Pretraining
Algorithms Method

ResNet-50
CIFAR-10 CIFAR-100

Entropy Brier Entropy Brier

SimCLR

NC100 0.3756 ± 0.0005 0.3143 ± 0.0012 0.2969 ± 0.0052 0.2091 ± 0.0038

Dist1 0.2709 ± 0.0061 0.2363 ± 0.0047 0.0954 ± 0.0055 0.0875 ± 0.0058

Norm 0.2928 0.2387 0.1888 0.0493
LL 0.1779 ± 0.0085 0.1441 ± 0.0070 -0.0793 ± 0.0037 -0.0663 ± 0.0031

FV -0.0425 -0.0319 -0.1856 -0.1531

BYOL

NC100 0.4480 ± 0.0038 0.1542 ± 0.0009 0.4393 ± 0.0079 0.0670 ± 0.0017

Dist1 -0.2822 ± 0.0022 -0.1029 ± 0.0014 -0.4107 ± 0.0028 -0.0475 ± 0.0012

Norm 0.2253 0.0941 0.2490 0.0760
LL -0.3723 ± 0.0057 -0.1278 ± 0.0023 -0.5008 ± 0.0050 -0.0711 ± 0.0021

FV 0.1362 0.0252 0.0017 -0.0464

MoCo

NC100 0.3537 ± 0.0044 0.3002 ± 0.0035 0.2713 ± 0.0049 0.1857 ± 0.0026

Dist1 0.3532 ± 0.0046 0.3161 ± 0.0027 0.2199 ± 0.0049 0.1904 ± 0.0053

Norm 0.3764 0.3156 0.2321 0.1270
LL 0.2308 ± 0.0075 0.2031 ± 0.0078 -0.0391 ± 0.0064 -0.0240 ± 0.0045

FV 0.1279 0.1196 -0.1226 -0.0945



Table 6: Comparison on the correlation between our neighborhood consistency (NC100) and baseline methods in relation to
performance on in-distribution downstream tasks, for the unnormalized representation. The overall correlation is weaker
compared to the one observed when using normalized representation as presented in Table 4. Nevertheless, our approach
consistently shows a robust performance compared to baseline methods.

Pretraining
Algorithms Method

ResNet-18
CIFAR-10 CIFAR-100

Entropy Brier Entropy Brier

SimCLR

NC100 0.3237 ± 0.0023 0.2727 ± 0.0021 0.2868 ± 0.0014 0.2408 ± 0.0021

Dist1 -0.0590 ± 0.0071 -0.0460 ± 0.0065 -0.0317 ± 0.0061 0.0027 ± 0.0064

Norm 0.2907 0.2429 0.1198 0.0649
LL -0.0970 ± 0.0297 -0.0830 ± 0.0276 -0.2125 ± 0.0170 -0.1704 ± 0.0142

FV -0.3224 -0.2704 -0.2370 -0.1723

BYOL

NC100 0.2381 ± 0.0051 0.1643 ± 0.0037 0.2284 ± 0.0044 0.1720 ± 0.0040

Dist1 -0.0801 ± 0.0016 -0.0144 ± 0.0022 -0.2077 ± 0.0038 -0.1149 ± 0.0025

Norm 0.0725 0.0235 0.1659 0.1231
LL -0.1625 ± 0.0054 -0.0695 ± 0.0049 -0.3015 ± 0.0042 -0.1955 ± 0.0038

FV -0.0700 -0.0228 -0.1734 -0.1286

MoCo

NC100 0.3739 ± 0.0068 0.3181 ± 0.0067 0.3273 ± 0.0042 0.2816 ± 0.0032

Dist1 -0.0741 ± 0.0049 -0.0506 ± 0.0046 -0.0305 ± 0.0060 0.0137 ± 0.0068

Norm 0.3238 0.2708 0.2186 0.1432
LL -0.1630 ± 0.0152 -0.1421 ± 0.0145 -0.2103 ± 0.0284 -0.1786 ± 0.0246

FV -0.3410 -0.2899 -0.3155 -0.2432

Pretraining
Algorithms Method

ResNet-50
CIFAR-10 CIFAR-100

Entropy Brier Entropy Brier

SimCLR

NC100 0.3366 ± 0.0062 0.2833 ± 0.0055 0.2635 ± 0.0040 0.2203 ± 0.0033

Dist1 -0.0445 ± 0.0056 -0.0337 ± 0.0052 -0.0328 ± 0.0056 0.0053 ± 0.0055

Norm 0.2789 0.2385 0.1311 0.0710
LL 0.0047 ± 0.0220 0.0053 ± 0.0205 -0.1066 ± 0.0104 -0.0739 ± 0.0097

FV -0.3155 -0.2706 -0.2472 -0.1833

BYOL

NC100 0.3704 ± 0.0021 0.2291 ± 0.0012 0.3194 ± 0.0061 0.1737 ± 0.0034

Dist1 -0.2229 ± 0.0023 -0.1601 ± 0.0011 -0.3281 ± 0.0021 -0.1754 ± 0.0013

Norm 0.1990 0.1184 0.1990 0.1476
LL -0.2289 ± 0.0035 -0.1691 ± 0.0012 -0.3320 ± 0.0025 -0.1778 ± 0.0011

FV -0.2001 -0.1177 -0.1881 -0.1433

MoCo

NC100 0.3586 ± 0.0049 0.3038 ± 0.0060 0.2788 ± 0.0089 0.2247 ± 0.0067

Dist1 -0.1344 ± 0.0046 -0.1149 ± 0.0047 -0.0778 ± 0.0067 -0.0351 ± 0.0070

Norm 0.3798 0.3294 0.2172 0.1659
LL -0.1138 ± 0.0090 -0.1032 ± 0.0093 -0.1433 ± 0.0093 -0.1131 ± 0.0094

FV -0.3707 -0.3201 -0.2604 -0.2145



Table 7: Comparison on the correlation between our neighborhood consistency (NC100) and baseline methods in relation to
performance on transfer learning tasks from TinyImagenet to CIFAR-10, CIFAR-100, and STL-10.

Pretraining
Algorithms Method

ResNet-18
TinyImagenet →

CIFAR-10 CIFAR-100 STL-10
Entropy Brier Entropy Brier Entropy Brier

SimCLR

NC100 0.1729 ± 0.0090 0.1292 ± 0.0089 0.1680 ± 0.0032 0.1343 ± 0.0032 0.2176 ± 0.0112 0.1513 ± 0.0106

Dist1 0.1311 ± 0.0127 0.0933 ± 0.0115 0.0138 ± 0.0071 -0.0251 ± 0.0049 0.1098 ± 0.0151 0.0520 ± 0.0116

Norm 0.2124 0.1642 0.1220 0.0507 0.1641 0.0852
LL 0.0369 ± 0.0063 0.0168 ± 0.0056 -0.0991 ± 0.0065 -0.1269 ± 0.0050 0.0205 ± 0.0035 -0.0180 ± 0.0033

FV -0.0919 -0.0779 -0.1660 -0.1668 -0.1872 -0.1593

BYOL

NC100 0.2557 ± 0.0080 0.1431 ± 0.0049 0.2352 ± 0.0027 0.1525 ± 0.0028 0.0374 ± 0.0101 0.0232 ± 0.0052

Dist1 -0.1458 ± 0.0073 -0.0923 ± 0.0048 -0.2716 ± 0.0053 -0.1525 ± 0.0057 -0.2893 ± 0.0089 -0.2178 ± 0.0071

Norm 0.1483 0.0749 0.1879 0.1315 0.1021 0.0772
LL -0.2106 ± 0.0042 -0.1248 ± 0.0027 -0.3418 ± 0.0022 -0.2006 ± 0.0023 -0.3319 ± 0.0021 -0.2472 ± 0.0024

FV -0.1386 -0.0713 -0.1874 -0.1202 -0.1171 -0.0790

MoCo

NC100 0.1880 ± 0.0080 0.1313 ± 0.0071 0.1797 ± 0.0054 0.1446 ± 0.0056 0.2263 ± 0.0128 0.1463 ± 0.0129

Dist1 0.1213 ± 0.0097 0.0718 ± 0.0093 0.0311 ± 0.0060 -0.0143 ± 0.0057 0.0993 ± 0.0142 0.0223 ± 0.0101

Norm 0.1930 0.1355 0.1321 0.0531 0.1327 0.0443
LL 0.0158 ± 0.0087 -0.0082 ± 0.0074 -0.1046 ± 0.0048 -0.1386 ± 0.0040 -0.0083 ± 0.0074 -0.0577 ± 0.0067

FV -0.0793 -0.0701 -0.1499 -0.1658 -0.1615 -0.1577

Pretraining
Algorithms Method

ResNet-50
TinyImagenet →

CIFAR-10 CIFAR-100 STL-10
Entropy Brier Entropy Brier Entropy Brier

SimCLR

NC100 0.1224 ± 0.0061 0.0804 ± 0.0048 0.1467 ± 0.0075 0.1194 ± 0.0062 0.1866 ± 0.0062 0.1169 ± 0.0055

Dist1 0.0894 ± 0.0077 0.0531 ± 0.0081 -0.0246 ± 0.0072 -0.0627 ± 0.0066 0.0340 ± 0.0142 -0.0167 ± 0.0117

Norm 0.1549 0.1098 0.0895 0.0177 0.0608 -0.0056
LL 0.0225 ± 0.0077 0.0027 ± 0.0062 -0.1192 ± 0.0051 -0.1443 ± 0.0041 -0.0149 ± 0.0062 -0.0495 ± 0.0043

FV -0.1078 -0.0878 -0.1867 -0.1840 -0.2178 -0.1829

BYOL

NC100 0.2561 ± 0.0066 0.1258 ± 0.0037 0.2600 ± 0.0028 0.1005 ± 0.0020 0.1410 ± 0.0054 0.0123 ± 0.0038

Dist1 -0.1885 ± 0.0016 -0.1274 ± 0.0016 -0.3075 ± 0.0019 -0.1679 ± 0.0040 -0.2371 ± 0.0022 -0.1925 ± 0.0020

Norm 0.1620 0.0918 0.1082 0.0816 0.0963 0.0380
LL -0.3130 ± 0.0040 -0.1763 ± 0.0029 -0.3671 ± 0.0031 -0.1797 ± 0.0019 -0.3235 ± 0.0094 -0.2002 ± 0.0048

FV -0.1668 -0.0737 -0.1441 -0.0705 -0.0584 0.0205

MoCo

NC100 0.1927 ± 0.0045 0.1300 ± 0.0040 0.1962 ± 0.0019 0.1560 ± 0.0022 0.2170 ± 0.0072 0.1433 ± 0.0046

Dist1 0.1751 ± 0.0081 0.1109 ± 0.0077 0.0759 ± 0.0054 0.0257 ± 0.0045 0.1696 ± 0.0106 0.0710 ± 0.0089

Norm 0.2503 0.1803 0.1838 0.1034 0.2524 0.1524
LL 0.0458 ± 0.0108 0.0145 ± 0.0098 -0.0916 ± 0.0060 -0.1239 ± 0.0055 0.0133 ± 0.0036 -0.0502 ± 0.0040

FV -0.0560 -0.0400 -0.1510 -0.1578 -0.1735 -0.1577



Table 8: Comparison on the correlation between our neighborhood consistency (NC100) and baseline methods in relation
to performance on transfer learning tasks from TinyImagenet to CIFAR-10, CIFAR-100, and STL-10, for the
multi-class downstream classification tasks.

Pretraining
Algorithms Method

ResNet-18
TinyImagenet →

CIFAR-10 CIFAR-100 STL-10
Entropy Brier Entropy Brier Entropy Brier

SimCLR

NC100 0.1673 ± 0.0080 0.1230 ± 0.0073 0.1486 ± 0.0046 0.1031 ± 0.0018 0.2012 ± 0.0106 0.1271 ± 0.0100

Dist1 0.1331 ± 0.0122 0.0982 ± 0.0116 0.0082 ± 0.0064 -0.0162 ± 0.0051 0.0633 ± 0.0122 0.0382 ± 0.0107

Norm 0.2294 0.1654 0.1527 0.0348 0.1431 0.0624
LL 0.0428 ± 0.0065 0.0248 ± 0.0057 -0.0976 ± 0.0077 -0.0986 ± 0.0048 -0.0271 ± 0.0030 -0.0224 ± 0.0035

FV -0.0865 -0.0627 -0.1452 -0.1268 -0.2071 -0.1423

BYOL

NC100 0.3447 ± 0.0110 0.0960 ± 0.0039 0.3263 ± 0.0039 0.0615 ± 0.0029 0.0867 ± 0.0115 -0.0033 ± 0.0044

Dist1 -0.2253 ± 0.0086 -0.0370 ± 0.0033 -0.3650 ± 0.0054 -0.0531 ± 0.0047 -0.3468 ± 0.0088 -0.1432 ± 0.0079

Norm 0.1897 0.0630 0.2239 0.0638 0.1282 0.0488
LL -0.3121 ± 0.0058 -0.0680 ± 0.0015 -0.4643 ± 0.0025 -0.0761 ± 0.0015 -0.4062 ± 0.0018 -0.1655 ± 0.0022

FV -0.1990 -0.0564 -0.2246 -0.0565 -0.1513 -0.0462

MoCo

NC100 0.1674 ± 0.0074 0.1184 ± 0.0062 0.1631 ± 0.0053 0.1146 ± 0.0054 0.2047 ± 0.0136 0.1110 ± 0.0122

Dist1 0.0927 ± 0.0084 0.0649 ± 0.0089 0.0019 ± 0.0053 -0.0195 ± 0.0055 0.0443 ± 0.0120 0.0022 ± 0.0082

Norm 0.1931 0.1304 0.1458 0.0221 0.1163 0.0235
LL -0.0049 ± 0.0083 -0.0086 ± 0.0075 -0.1335 ± 0.0055 -0.1229 ± 0.0039 -0.0669 ± 0.0078 -0.0620 ± 0.0072

FV -0.0811 -0.0561 -0.1582 -0.1415 -0.1919 -0.1371

Pretraining
Algorithms Method

ResNet-50
TinyImagenet →

CIFAR-10 CIFAR-100 STL-10
Entropy Brier Entropy Brier Entropy Brier

SimCLR

NC100 0.1205 ± 0.0055 0.0788 ± 0.0037 0.1350 ± 0.0079 0.0877 ± 0.0053 0.1693 ± 0.0056 0.0983 ± 0.0042

Dist1 0.0824 ± 0.0073 0.0599 ± 0.0083 -0.0303 ± 0.0058 -0.0482 ± 0.0059 -0.0197 ± 0.0119 -0.0260 ± 0.0105

Norm 0.1597 0.1078 0.1218 0.0022 0.0366 -0.0194
LL 0.0147 ± 0.0080 0.0070 ± 0.0062 -0.1214 ± 0.0064 -0.1115 ± 0.0043 -0.0671 ± 0.0055 -0.0533 ± 0.0038

FV -0.1159 -0.0776 -0.1817 -0.1397 -0.2504 -0.1702

BYOL

NC100 0.4270 ± 0.0101 0.1025 ± 0.0034 0.4118 ± 0.0071 0.0168 ± 0.0012 0.2684 ± 0.0090 -0.0226 ± 0.0032

Dist1 -0.1754 ± 0.0028 -0.0533 ± 0.0018 -0.2933 ± 0.0030 -0.0617 ± 0.0034 -0.2536 ± 0.0031 -0.1122 ± 0.0021

Norm 0.1403 0.0674 0.0850 0.0276 0.1012 0.0055
LL -0.3734 ± 0.0104 -0.1033 ± 0.0022 -0.4438 ± 0.0044 -0.0557 ± 0.0019 -0.3988 ± 0.0164 -0.1121 ± 0.0031

FV -0.2530 -0.0784 -0.2430 -0.0272 -0.1099 0.0267

MoCo

NC100 0.1738 ± 0.0051 0.1109 ± 0.0041 0.1854 ± 0.0009 0.1191 ± 0.0021 0.1999 ± 0.0065 0.1030 ± 0.0039

Dist1 0.1372 ± 0.0069 0.0979 ± 0.0075 0.0415 ± 0.0043 0.0077 ± 0.0038 0.1079 ± 0.0094 0.0350 ± 0.0074

Norm 0.2553 0.1715 0.2025 0.0562 0.2469 0.1174
LL 0.0184 ± 0.0111 0.0156 ± 0.0105 -0.1330 ± 0.0082 -0.1153 ± 0.0054 -0.0595 ± 0.0050 -0.0618 ± 0.0048

FV -0.0508 -0.0204 -0.1617 -0.1351 -0.2007 -0.1293



Table 9: Comparison on the correlation between our neighborhood consistency (NC100) and baseline methods in relation
to performance on transfer learning tasks from TinyImagenet to CIFAR-10, CIFAR-100, and STL-10, for the
unnormalized representation.

Pretraining
Algorithms Method

ResNet-18
TinyImagenet →

CIFAR-10 CIFAR-100 STL-10
Entropy Brier Entropy Brier Entropy Brier

SimCLR

NC100 0.1392 ± 0.0072 0.1025 ± 0.0067 0.1520 ± 0.0052 0.1218 ± 0.0057 0.1540 ± 0.0103 0.1054 ± 0.0080

Dist1 -0.1318 ± 0.0092 -0.1101 ± 0.0090 -0.1067 ± 0.0079 -0.0671 ± 0.0053 -0.1211 ± 0.0120 -0.0838 ± 0.0086

Norm 0.2124 0.1642 0.1220 0.0507 0.1641 0.0852
LL -0.2160 ± 0.0245 -0.1896 ± 0.0169 -0.2046 ± 0.0167 -0.1679 ± 0.0121 -0.1988 ± 0.0330 -0.1736 ± 0.0187

FV -0.2816 -0.2204 -0.2308 -0.1655 -0.2912 -0.2040

BYOL

NC100 0.2551 ± 0.0078 0.1437 ± 0.0047 0.2317 ± 0.0026 0.1505 ± 0.0026 0.0354 ± 0.0103 0.0234 ± 0.0056

Dist1 -0.1759 ± 0.0052 -0.1076 ± 0.0032 -0.2996 ± 0.0045 -0.1732 ± 0.0046 -0.3114 ± 0.0080 -0.2346 ± 0.0061

Norm 0.1483 0.0749 0.1879 0.1315 0.1021 0.0772
LL -0.2346 ± 0.0079 -0.1338 ± 0.0034 -0.3422 ± 0.0046 -0.2052 ± 0.0028 -0.3240 ± 0.0070 -0.2454 ± 0.0039

FV -0.1461 -0.0743 -0.1886 -0.1296 -0.1100 -0.0814

MoCo

NC100 0.1728 ± 0.0075 0.1227 ± 0.0064 0.1738 ± 0.0042 0.1393 ± 0.0041 0.1886 ± 0.0108 0.1229 ± 0.0092

Dist1 -0.0949 ± 0.0081 -0.0767 ± 0.0084 -0.0948 ± 0.0071 -0.0570 ± 0.0058 -0.0650 ± 0.0112 -0.0440 ± 0.0076

Norm 0.1930 0.1355 0.1321 0.0531 0.1327 0.0443
LL -0.1594 ± 0.0210 -0.1421 ± 0.0115 -0.1662 ± 0.0158 -0.1439 ± 0.0061 -0.1339 ± 0.0352 -0.1382 ± 0.0179

FV -0.2590 -0.1912 -0.2404 -0.1730 -0.2452 -0.1591

Pretraining
Algorithms Method

ResNet-50
TinyImagenet →

CIFAR-10 CIFAR-100 STL-10
Entropy Brier Entropy Brier Entropy Brier

SimCLR

NC100 0.1061 ± 0.0104 0.0693 ± 0.0091 0.1385 ± 0.0102 0.1144 ± 0.0088 0.1216 ± 0.0154 0.0710 ± 0.0129

Dist1 -0.0954 ± 0.0092 -0.0787 ± 0.0090 -0.1092 ± 0.0099 -0.0748 ± 0.0088 -0.0775 ± 0.0148 -0.0544 ± 0.0108

Norm 0.1549 0.1098 0.0895 0.0177 0.0608 -0.0056
LL -0.1479 ± 0.0121 -0.1284 ± 0.0095 -0.1677 ± 0.0124 -0.1412 ± 0.0108 -0.1293 ± 0.0209 -0.1208 ± 0.0128

FV -0.2344 -0.1760 -0.2218 -0.1556 -0.2328 -0.1520

BYOL

NC100 0.2578 ± 0.0067 0.1273 ± 0.0039 0.2598 ± 0.0029 0.1014 ± 0.0021 0.1404 ± 0.0058 0.0101 ± 0.0038

Dist1 -0.2212 ± 0.0015 -0.1375 ± 0.0019 -0.3117 ± 0.0011 -0.1690 ± 0.0029 -0.2528 ± 0.0026 -0.1894 ± 0.0027

Norm 0.1620 0.0918 0.1082 0.0816 0.0963 0.0380
LL -0.2331 ± 0.0036 -0.1405 ± 0.0019 -0.3030 ± 0.0047 -0.1634 ± 0.0024 -0.2607 ± 0.0043 -0.1895 ± 0.0021

FV -0.1729 -0.0944 -0.1309 -0.0868 -0.1125 -0.0368

MoCo

NC100 0.2118 ± 0.0062 0.1453 ± 0.0052 0.2091 ± 0.0045 0.1575 ± 0.0035 0.1827 ± 0.0088 0.1071 ± 0.0094

Dist1 -0.1440 ± 0.0047 -0.1171 ± 0.0049 -0.1306 ± 0.0076 -0.0882 ± 0.0062 -0.1507 ± 0.0081 -0.1256 ± 0.0052

Norm 0.2503 0.1803 0.1838 0.1034 0.2524 0.1524
LL -0.1417 ± 0.0191 -0.1256 ± 0.0137 -0.1374 ± 0.0141 -0.1093 ± 0.0119 -0.1313 ± 0.0257 -0.1411 ± 0.0200

FV -0.2906 -0.2087 -0.2559 -0.1829 -0.3238 -0.2290



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4: Ablation over the ensemble size (M ) for NCk (ours) and baselines. Brier score is used for the downstream
performance metric.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Ablation over the number of neighbors (k) for NCk (ours) and baselines. Brier score is used for the downstream
performance metric.



Table 10: Comparison on the correlation between our neighborhood consistency (NC100) and baseline methods in relation to
performance on in-distribution downstream tasks for a single embedding function.

Pretraining
Algorithms Method ResNet-18 ResNet-50

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

SimCLR

NC100 0.3069 ± 0.0056 0.2463 ± 0.0033 0.3067 ± 0.0059 0.2428 ± 0.0032

Dist1 0.2412 ± 0.0020 0.0625 ± 0.0033 0.2283 ± 0.0057 0.0898 ± 0.0020

Dist∗1 0.2058 ± 0.0208 0.0572 ± 0.0199 0.2048 ± 0.0290 0.0838 ± 0.0246

Norm 0.2368 ± 0.0065 0.0628 ± 0.0048 0.2346 ± 0.0055 0.0698 ± 0.0063

Norm∗ 0.2158 ± 0.0390 0.0621 ± 0.0352 0.2157 ± 0.0326 0.0690 ± 0.0321

LL 0.1304 ± 0.0044 -0.0983 ± 0.0039 0.1316 ± 0.0030 -0.0907 ± 0.0033

LL∗ 0.1113 ± 0.0175 -0.0866 ± 0.0151 0.1188 ± 0.0234 -0.0803 ± 0.0149

FV -0.0431 ± 0.0080 -0.1625 ± 0.0034 -0.0359 ± 0.0051 -0.1798 ± 0.0044

BYOL

NC100 0.1741 ± 0.0050 0.1685 ± 0.0026 0.1904 ± 0.0223 0.1655 ± 0.0118

Dist1 0.0399 ± 0.0058 -0.0623 ± 0.0024 -0.1221 ± 0.0185 -0.1441 ± 0.0109

Dist∗1 0.0324 ± 0.0211 -0.0576 ± 0.0107 -0.0849 ± 0.0474 -0.1270 ± 0.0141

Norm 0.0241 ± 0.0059 0.1195 ± 0.0042 0.1100 ± 0.0292 0.1400 ± 0.0094

Norm∗ 0.0246 ± 0.0084 0.1112 ± 0.0173 0.0895 ± 0.0373 0.1142 ± 0.0432

LL -0.0157 ± 0.0060 -0.1533 ± 0.0028 -0.1534 ± 0.0149 -0.1847 ± 0.0090

LL∗ -0.0190 ± 0.0232 -0.1420 ± 0.0099 -0.1339 ± 0.0370 -0.1681 ± 0.0116

FV 0.0936 ± 0.0042 -0.1236 ± 0.0056 0.0432 ± 0.0153 -0.0639 ± 0.0107

MoCo

NC100 0.3521 ± 0.0025 0.3038 ± 0.0039 0.3137 ± 0.0039 0.2173 ± 0.0039

Dist1 0.2990 ± 0.0022 0.1873 ± 0.0022 0.3296 ± 0.0033 0.2130 ± 0.0033

Dist∗1 0.2763 ± 0.0280 0.1766 ± 0.0124 0.3065 ± 0.0188 0.1991 ± 0.0277

Norm 0.2646 ± 0.0041 0.1396 ± 0.0021 0.3214 ± 0.0041 0.1616 ± 0.0058

Norm∗ 0.2536 ± 0.0350 0.1369 ± 0.0191 0.2952 ± 0.0305 0.1750 ± 0.0421

LL 0.1697 ± 0.0025 -0.0710 ± 0.0030 0.2071 ± 0.0053 -0.0331 ± 0.0041

LL∗ 0.1545 ± 0.0261 -0.0629 ± 0.0096 0.1866 ± 0.0173 -0.0266 ± 0.0208

FV 0.0324 ± 0.0036 -0.1534 ± 0.0030 0.1101 ± 0.0042 -0.1075 ± 0.0048



Table 11: Comparison on the correlation between our neighborhood consistency (NC100) and baseline methods in relation
to performance on transfer learning tasks from TinyImagenet to CIFAR-10, CIFAR-100, and STL-10 for a single
embedding function.

Pretraining
Algorithms Method ResNet-18 ResNet-50

TinyImagenet → TinyImagenet →
CIFAR-10 CIFAR-100 STL-10 CIFAR-10 CIFAR-100 STL-10

SimCLR

NC100 0.1256 ± 0.0031 0.1301 ± 0.0023 0.1485 ± 0.0016 0.0791 ± 0.0024 0.1171 ± 0.0015 0.1153 ± 0.0021

Dist1 0.0915 ± 0.0036 -0.0235 ± 0.0018 0.0519 ± 0.0030 0.0531 ± 0.0032 -0.0611 ± 0.0016 -0.0161 ± 0.0037

Dist∗1 0.0835 ± 0.0112 -0.0204 ± 0.0045 0.0490 ± 0.0129 0.0488 ± 0.0143 -0.0566 ± 0.0092 -0.0134 ± 0.0215

Norm 0.1619 ± 0.0032 0.0499 ± 0.0022 0.0845 ± 0.0028 0.1093 ± 0.0025 0.0179 ± 0.0024 -0.0051 ± 0.0037

Norm∗ 0.1542 ± 0.0125 0.0494 ± 0.0063 0.0847 ± 0.0172 0.1066 ± 0.0191 0.0198 ± 0.0159 0.0012 ± 0.0301

LL 0.0179 ± 0.0035 -0.1221 ± 0.0020 -0.0165 ± 0.0028 0.0039 ± 0.0029 -0.1413 ± 0.0023 -0.0484 ± 0.0036

LL∗ 0.0172 ± 0.0098 -0.1136 ± 0.0042 -0.0128 ± 0.0137 0.0032 ± 0.0162 -0.1328 ± 0.0074 -0.0438 ± 0.0208

FV -0.0753 ± 0.0026 -0.1607 ± 0.0024 -0.1554 ± 0.0019 -0.0859 ± 0.0044 -0.1802 ± 0.0023 -0.1801 ± 0.0048

BYOL

NC100 0.1362 ± 0.0119 0.1451 ± 0.0084 0.0221 ± 0.0080 0.1141 ± 0.0114 0.0881 ± 0.0078 0.0121 ± 0.0180

Dist1 -0.0813 ± 0.0066 -0.1393 ± 0.0040 -0.2011 ± 0.0077 -0.1103 ± 0.0209 -0.1428 ± 0.0200 -0.1677 ± 0.0195

Dist∗1 -0.0732 ± 0.0167 -0.1230 ± 0.0146 -0.1835 ± 0.0205 -0.0830 ± 0.0357 -0.1260 ± 0.0243 -0.1272 ± 0.0452

Norm 0.0736 ± 0.0109 0.1254 ± 0.0048 0.0769 ± 0.0060 0.0849 ± 0.0114 0.0716 ± 0.0139 0.0392 ± 0.0167

Norm∗ 0.0738 ± 0.0209 0.1191 ± 0.0150 0.0681 ± 0.0399 0.0682 ± 0.0445 0.0542 ± 0.0512 0.0186 ± 0.0637

LL -0.1131 ± 0.0058 -0.1857 ± 0.0030 -0.2295 ± 0.0063 -0.1555 ± 0.0131 -0.1537 ± 0.0123 -0.1753 ± 0.0092

LL∗ -0.1056 ± 0.0078 -0.1709 ± 0.0091 -0.2110 ± 0.0153 -0.1279 ± 0.0238 -0.1420 ± 0.0244 -0.1352 ± 0.0365

FV -0.0690 ± 0.0098 -0.1137 ± 0.0050 -0.0776 ± 0.0067 -0.0691 ± 0.0110 -0.0634 ± 0.0080 0.0152 ± 0.0155

MoCo

NC100 0.1290 ± 0.0021 0.1421 ± 0.0012 0.1440 ± 0.0017 0.1285 ± 0.0021 0.1541 ± 0.0025 0.1419 ± 0.0037

Dist1 0.0707 ± 0.0019 -0.0139 ± 0.0013 0.0223 ± 0.0017 0.1098 ± 0.0017 0.0253 ± 0.0010 0.0704 ± 0.0021

Dist∗1 0.0667 ± 0.0093 -0.0109 ± 0.0059 0.0233 ± 0.0158 0.1049 ± 0.0106 0.0264 ± 0.0085 0.0688 ± 0.0091

Norm 0.1337 ± 0.0031 0.0520 ± 0.0017 0.0435 ± 0.0019 0.1785 ± 0.0011 0.1019 ± 0.0028 0.1502 ± 0.0021

Norm∗ 0.1314 ± 0.0131 0.0547 ± 0.0090 0.0484 ± 0.0200 0.1737 ± 0.0096 0.1011 ± 0.0126 0.1456 ± 0.0149

LL -0.0075 ± 0.0025 -0.1360 ± 0.0020 -0.0565 ± 0.0022 0.0148 ± 0.0022 -0.1224 ± 0.0016 -0.0494 ± 0.0027

LL∗ -0.0074 ± 0.0109 -0.1280 ± 0.0038 -0.0519 ± 0.0147 0.0135 ± 0.0105 -0.1143 ± 0.0058 -0.0423 ± 0.0200

FV -0.0687 ± 0.0021 -0.1627 ± 0.0026 -0.1550 ± 0.0026 -0.0391 ± 0.0024 -0.1559 ± 0.0032 -0.1555 ± 0.0034



D FURTHER DISCUSSION ON NEIGHBORHOOD CONSISTENCY

In this section, we present an alternative viewpoint to clarify the underlying motivation behind neighborhood consistency
and demonstrate how it addresses the shortcomings of existing supervised learning frameworks. As illustrated in Section 2,
the uncertainty in supervised learning could be expressed by the variance of predictions across various functions. It is
important to note that this approach is applicable since different functions transform the input into the "same" output space
and the distance/similarity within the output space is well-defined.

From the perspective of unsupervised learning, however, there is no "unique" ground truth representation space which makes
it difficult to compare the representations constructed by different embedding functions. Therefore, to properly compare
the two distinct abstract representations hi(x

∗) and hj(x
∗), we need a transformation function ϕ(·) that maps different

representations into a comparable form. Then, following Equation (3), the consistency across the set of representations
H = {h1(x

∗), · · · , hM (x∗)} can be assessed as we do in :

Unc(x∗;H) =
1

M2

∑
i<j

Sim
(
ϕ(z∗

i ), ϕ(z
∗
j

)
) (31)

where ϕ(z∗
i ) can be viewed as a surrogate representation of z∗

i = hi(x
∗).

What characteristics should an appropriate ϕ(·) have? First and foremost, it would require an anchor that connects different
representation spaces, and this paper suggests using (reliable) "pre-training data" as such anchors. As such, we first introduce
a surrogate vector representation consisting of the relative distances from the test point to each reference point:

ϕrel-fc(z
∗
i ;Xref) ≜

[
dist

(
z∗
i , z

(1)
i

)
, · · · , dist

(
z∗
i , z

(n)
i

)]T
(32)

where z
(l)
i = hi(x

(l)) and dist(·) is a distance metric in the representation space (e.g., cosine distance). This surrogate
representation captures the relational information to reference data points rather than taking account for the absolute location
of the test representation.

The aforementioned surrogate, however, can be burdened with an excessive amount of information. To address the issue, we
may consider a sparsified representation as in following:

ϕrel-sparse(z
∗
i ;Xref) ≜

[
1
(
dist

(
z∗
i , z

(1)
i

)
≤ ϵ

)
, · · · ,1

(
dist

(
z∗
i , z

(n)
i

)
≤ ϵ

)]T
(33)

where 1 is a indicator function; and ϵ ∈ R is a small real number. The equivalent set notation of the vector representation is:
ϵ-NNi(x

∗) ≜ {l | dist
(
hi(x

∗), hi(x
(l))

)
≤ ϵ}. The corresponding neighborhood consistency measure can be computed as

follows:
NCϵ(x

∗) ≜
1

M2

∑
i<j

Sim
(
ϵ-NNi

(
x∗), ϵ-NNj

(
x∗)) . (34)

However, selecting an appropriate value for ϵ can be challenging since determining the proper scale of the representation
space is not straightforward. As a result, we introduce a scale-free version of neighborhood consistency that relies on the
local k-nearest neighborhood:

NCk(x
∗) ≜

1

M2

∑
i<j

Sim
(
k-NNi

(
x∗), k-NNj

(
x∗)) (35)

where k-NNi(x
∗) is the index set of k nearest neighbors of hi(x

∗) among Zi,ref.

For a set similarity metric Sim, we can use either Jaccard Similarity or Overlap Coefficient:

Jaccard Similarity(S1, S2) ≜
|S1 ∩ S2|
|S1 ∪ S2|

(36)

Overlap Coefficient(S1, S2) ≜
|S1 ∩ S2|

min(|S1|, |S2|)
. (37)

If the size of S1 and S2 are equal to k: |S1 ∪ S2| = 2k − |S1 ∩ S2| and min(|S1|, |S2|) = k. Thus, regardless of the
selection, both similarity metrics solely depends on |S1 ∩ S2| when the k-NN approach is used to determine the neighbors.
Additionally, given a set of test points, both metrics provide the same order (i.e., rank) in terms of their representation
reliability.



E MORE ON RELATED WORK

Self-supervised representation learning has become standard in many computer vision applications. Instead of training a
neural network that takes in the raw data and outputs the target value (e.g., class label), it optimizes a neural network hθ that
maps an input x into the latent vector z ∈ Rd in the d-dimensional representation space.

Uncertainty estimation is the process of figuring out how uncertain or reliable the learned representations of the data
are. Assessing the uncertainty of the neural network’s representation is a key step in making a reliable machine learning
framework. This is because the uncertainty provides information about the data and how confident the model is in its
modeling. There are several ways to estimate uncertainty in deep learning, such as Bayesian approaches and ensembling, in
supervised learning settings where the ground truth output (e.g., label) is given. Estimating uncertainty in deep representation
learning, on the other hand, is still a relatively undiscovered area of research.

E.1 UNCERTAINTY-AWARE REPRESENTATION LEARNING

The representation model is often considered to be deterministic in recently popular frameworks [Chen et al., 2020a, He
et al., 2020, Chen et al., 2020b]. To address the reliability issue of those frameworks, some recent works, including [Oh et al.,
2018, Wu and Goodman, 2020], extend the prior deterministic frameworks to stochastic ones, allowing for the construction
of an uncertainty-aware self-Supervised representation learning framework.

Oh et al. [2018] introduces a hedged instance embedding (HIB) that optimizes a representation network that approximates
the distribution over the representation vector pθ(z|x) under the (soft) contrastive loss [Hadsell et al., 2006] and variational
information bottleneck (VIB) principle [Alemi et al., 2016, Achille and Soatto, 2017]. More specifically, HIB encoder
parameterizes the distribution as the mixture of C Gaussians: pθ(z|x) =

∑C
c=1 N (z;µθ(x, c),Σθ(x, c)). Based on the

stochastic embedding, the paper proposes an uncertainty metric, called self-mismatch probability:

sself_mismatch(x
∗) ≜ 1− p(m|x∗,x∗) (38)

where p(m|x1,x2) ≈
∫
p(m|z1, z2)pθ(z1|x1)pθ(z2|x2)dz1dz2 and p(m|z1, z2) ≜ σ(−a∥z1 − z2∥2 + b) based on their

contrastive learning method. Self-mismatch probability can be interpreted as an expectation of the distance between two
points randomly sampled from the output distribution. In other words, this uncertainty metric is based on the idea that an
input with a large aleatoric uncertainty will span a wider region, resulting in a smaller p(m|x, x).

In [Wu and Goodman, 2020], a similar extension is also proposed. The paper introduces a distribution encoder that
outputs the representation of Gaussian distribution with diagonal covariance matrix Σθ(x) and extends the normalized
temperature-scaled cross-entropy loss (NT-Xent) [Chen et al., 2020a] to distribution-level contrastive objective. The norm of
the covariance matrix determined by the distribution encoder is used to assess the reliability of a given input:

svar(x
∗) ≜ ||Σθ(x

∗)|| (39)

Despite the benefits of stochastic representation, there are still some shortcomings. One limitation would be that it requires
re-training. Large models that have gotten a lot of attention lately are usually trained on a lot of data and are getting bigger,
which means they take more time and computing power to train. As a result, it may not always be practical or feasible for
users to re-train a model. Additionally, new training schemes can impose unexpected inductive bias to algorithms that are
already working well. For example, most probability-based methods are based on standard distributions like the Gaussian
or a mixture of them. However, these assumptions may reduce the effectiveness of the model or slow down the training
procedure.

E.2 NOVELTY DETECTION IN REPRESENTATION SPACE

There are several studies that introduce ways to detect out-of-distribution (OOD) samples by determining the novelty of the
data representation from a deterministic model [Lee et al., 2018, van Amersfoort et al., 2020, Tack et al., 2020, Mirzaei
et al., 2022]. Although the specific details of each technique vary, this study observed that these methods commonly use the
relative distance information of the query data point’s representation vector to other reference points:

sd(x
∗) ≜ Distk

({
dist

(
h(x∗), h(x)

)
| x ∈ Xref

})
(40)



where Distk outputs an average of the k smallest relative distances in the representation space between the query x∗ and
reference points Xref, measured by the distance metric dist.

As shown in the table, some works are designed for supervised learning schemes that require instance-specific training
labels. Lee et al. [2018] and van Amersfoort et al. [2020] construct reference points by empirical class means:{

µ̂c =
1

Nc

∑
xi∈Xref

hθ(xi)1(yi = c)
}C

c=1
(41)

where µ̂c is a centroid of training representations of which the label yi is equal to c, Nc is the number of training instances
belonging to the label c, and C is the number of classes. Then, Lee et al. [2018] defines an uncertainty score as a minimum
Mahalanobis distance to each of the centroids using a tied empirical covariance matrix, whereas van Amersfoort et al. [2020]
calculates a distance using a Radial Basis Function (RBF) kernel. These approaches can also be viewed as estimating the
probability density of the representation to each class.

Nevertheless, the aforementioned methods necessitate training labels, which is not always feasible. In addition, evaluating
the uncertainty based on the training labels does not guarantee the method’s efficacy, as downstream tasks frequently use
distinct labeling schemes. In order to estimate uncertainty in the absence of class label information, Tack et al. [2020]
measures the minimum distance between the query instance and all training instances in the representation space. Tack
et al. [2020] additionally suggest to ensemble the uncertainty score with various transformations (i.e., augmentation) T :
sd-ens(x∗) = 1

|T |
∑

t∼T sd(t(x
∗)). Meanwhile, Mirzaei et al. [2022] averages the distance to k-nearest instances rather

than taking the closest one to improve the effectiveness.

The main limitation of the above two approaches is the lack of theoretical justification for the proposed metric, as it is
founded upon heuristic rules. For example, as demonstrated by our empirical studies in Section C.2, a wrong selection of the
distance metric can lead to contradictory results. In addition, as depicted in Figure 5, using a larger k in those schemes does
not necessarily ensure its effectiveness. Considering that the primary goal of these studies is to deploy foundation models in
safety-critical settings, establishing a robust reliability measure and analyzing its theoretical validity is vital.
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