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Information Theory for Trustworthy Machine Learning

Abstract

In this thesis, we provide an information-theoretic foundation for trustworthy machine learning

(ML). ML algorithms are increasingly used in applications of significant social consequences. It

is crucial to ensure that these algorithms are not just accurate but also generalizable, fair, and

privacy-preserving. We develop new information-theoretic tools for proving rigorous performance

guarantees for practical ML models and establishing protocols to ensure the responsible use of data.

Towards rigorous performance guarantees, we derive generalization bounds for understanding the

behaviors of complex ML models (e.g., neural networks). In particular, we study how the interaction

between data distributions and optimization methods influences generalization. We consider a family

of optimization methods—noisy iterative algorithms—and investigate their generalization capability.

We derive distribution-dependent generalization bounds by connecting noisy iterative algorithms

with additive noise channels found in information theory. Numerical experiments demonstrate that

our results can help understand many empirical observations of neural networks.

Towards responsible use, we characterize a fundamental limit of algorithmic fairness and privacy.

Specifically, we provide conditions that ensure fair use of group attributes and analyze the “best”

privacy-utility trade-offs among all privacy-preserving mechanisms. These theoretical results, in

turn, inspire new algorithms that can repair unfair models or preserve privacy in data sharing.

Finally, we evaluate the robustness of information-theoretic privacy measures and establish statistical

consistency of “optimal” privacy mechanisms.
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Chapter 1

Introduction

For decades, information theory has provided a mathematical theory for the systems that underlie

the digital world. The growth of information theory can be traced back to Claude Shannon’s

“A Mathematical Theory of Communication” [246] in 1948. In this paper, Shannon delineated a

methodological blueprint that established the theoretical foundation of communication:

• Model. Shannon introduced a simple yet profound communication model: a transmitter

encodes a discrete message set into a signal, which is sent through a noisy channel and then

decoded by a receiver. Furthermore, he incorporated randomness into both information source

and channel—communication was mainly considered as a deterministic signal reconstruction

problem before him.

• Analysis. Shannon assumed that the probability distributions of the information source and

the noisy channel are known and the computational power of the transmitter and receiver is

unrestricted. These assumptions enabled rigorous mathematical tools (e.g., random coding) to

analyze the model, leading to a fundamental limit of communication.

• Application. Despite its simplicity, the analysis not only revealed insights about reliable

communication, but also provided a design guideline for new coding schemes.

Since Shannon, this blueprint has been successfully applied to many other areas, including hypothesis

testing [62], cryptography [247], statistical mechanics [134], and quantum information theory [243].

Information theory has provided a foundation for systems that can reliably transmit, store, and

process massive amounts of data. The total amount of data generated in 2018 is estimated to be 33
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zettabytes (1 zettabyte = 1021 bytes). This number grows to 59 zettabytes in 2020 and is predicted to

reach 175 zettabytes in 2025 [278]. The massive amounts of data, along with the increasing computing

power, have fueled the fast development of machine learning (ML) in recent years. ML models and

algorithms are now increasingly used in applications of significant social consequence, including

hiring [39], loan approval [251], and college admission [50].

The widespread deployment of ML has exposed several new challenges. For example, it has

been documented in many applications, ranging from facial recognition [49], to criminal recidivism

prediction [10], to translation [40], that ML algorithms can be biased against legally protected groups.

Data publishing is increasingly pervasive, yet the disclosure of data may incur a privacy risk through

unwanted inferences [258]. Finally, modern ML models (e.g., neural networks) are increasingly

complex1 and, consequently, increasingly opaque. It is crucial to ensure that these complex models

not only work well in training but also generalize to unseen data in the future. These challenges

show that the standard approach of optimizing for high accuracy is not sufficient when developing

ML in applications of individual-level consequence. We must make ML systems worthy of trust.

In this thesis, we apply Shannon’s blueprint to build an information-theoretic foundation of

trustworthy ML2. We focus on three important aspects: (i) generalization of complex ML models; (ii)

algorithmic fairness; and (iii) privacy in data publishing. Our ultimate goal is to develop theory that

provides rigorous performance guarantees for ML systems and guides the responsible use of data.

Generalization. Classical statistical learning theory attributes the generalization of ML models to

the use of a hypothesis class with constrained complexity [269, 273]. However, the traditional wisdom

fails to explain many empirical observations in the overparameterized regime (e.g., deep neural

networks can often fit the entire training set while generalizing extremely well [307]). Motivated

by these issues, many new theories have been developed in order to understand the generalization

of complex models. For example, there is a line of recent works that investigate how optimization

algorithms drive the learning algorithm to a solution with “good” generalization properties [13, 28,

114]. In contrast, we focus on how data distribution influences the generalization of ML models.

By fitting different training data, ML models can exhibit distinct generalization behaviors even if

they have the same architecture and are trained by the same optimization method (see Figure 3.1).

1State-of-the-art deep neural networks have reached more than 100 billion parameters [46].

2We adopt the definition from Varshney [275]: trustworthy ML system is one that has sufficient: basic performance,
reliability, human interaction, and aligned purpose (i.e., alignment of the ML system’s purpose with a society’s wants).
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Since providing exact analytical expressions for the generalization gap is challenging in general, we

take a step back and derive generalization bounds. Our bounds are distribution-dependent and are

highly correlated with the true generalization gap as validated through numerical experiments. We

hope that this effort can help us understand the generalization of complex models and inspire new

regularization techniques for preventing overfitting.

Fairness. In domains where it is acceptable to fit a model that yields different decisions for

individuals based on group attributes (e.g., age, sex), ensuring fair use of the group attributes is

crucial. The fairness principles we adopt are non-maleficence (i.e., “do no harm”) and beneficence

(i.e., “do good”) [31]: ML models should avoid the causation of harm and be as accurate as possible

on each protected group. Existing works [86, 267, 305] mainly focus on developing new algorithms

(or models) to improve model performance by using group attributes. For example, Ustun et al. [267]

introduced a tree structure to recursively choose group attributes for decoupling classifiers. Dwork et

al. [86] proposed an algorithm to learn separate models for different groups using transfer learning.

In contrast, we ask the question: when is there a performance improvement from incorporating the

group attributes into the model? We compare split classifiers (i.e., a set of classifiers trained and

deployed separately on each group) with group-blind classifiers (classifiers that do not use group

attributes as input). We characterize conditions under which splitting classifiers brings the most

performance benefit. These conditions are cast in terms of the difference in probability distributions

across different protected groups. Our analysis also reveals a limitation of using group-blind

classifiers: they may incur an inherent accuracy trade-off between groups with different probability

distributions. Moreover, this trade-off cannot be reconciled by collecting more data or applying

different learning algorithms.

Privacy. We consider a one-shot-release model where a user shares a single data point with an

analyst to receive some utility. The data point is perturbed by applying a privacy mechanism so

that the analyst can reconstruct some useful information while keeping other private information

hidden. This is a different setting compared with differential privacy (DP) [87], which aims at

answering queries while simultaneously ensuring privacy of individual records in the database. In

other words, the one-shot-release model ensures that the user can reliably share their data with a

curator while DP concerns with the privacy risk when the curator releases some statistics of the

database. Moreover, DP (and local-DP [92]) is robust w.r.t. the data distribution and aims to protect
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individuals’ entire records. In contrast, we assume that the user’s data point contains some private

information, represented by a random variable S, and some useful information, represented by X.

We consider the strongest adversary in terms of statistical knowledge and computing power: the

adversary knows the true distribution of the data, the privacy mechanism being used, the disclosed

data, and has unrestricted computing resources. The adversary’s objective is to illegitimately infer

the private features associated with the disclosed data. Given the probability distribution of (S, X),

we characterize a fundamental limit of privacy-utility trade-off and design privacy mechanisms to

approach this limit.

Besides the methodological blueprint, information theory has provided powerful tools for mathe-

matical analysis. We apply these tools to address emerging challenges in ML. In Chapter 3, we use

strong data processing inequalities [66, 78] and properties of Gaussian channels [115] to analyze

ML generalization. In Chapter 4, we leverage two-point methods [45, 171] to provide conditions

for fair use of group attributes. In Chapter 5, we delineate a privacy-utility trade-off by using

tools from rate distortion theory [69]. In Chapter 6, we investigate the Lipschitz continuity of

many information-leakage measures. We hope that this effort opens a new application frontier for

information-theoretic tools in ML.

Overview and Main Contributions

We provide more details and elaborate on our contributions to each topic.

Generalization of Noisy Iterative Algorithms

Modern deep neural networks (DNNs) are highly expressive: they can memorize an entire training

dataset and still generalize well to unseen data [307]. This empirical observation is not captured by

traditional generalization bounds found in statistical learning theory, which attribute the generaliza-

tion ability to the use of a hypothesis class with constrained complexity [269, 273]. Recent studies

demonstrate that different algorithmic choices and data distributions may yield DNNs with contrast-

ing generalization behaviors [27, 120, 205]. In this thesis, we study the generalization properties of a

class of optimization methods used for training DNNs, namely noisy iterative algorithms.

Noisy iterative algorithms are used in different practical settings due to their many attractive

properties [see e.g., 173, 224, 301, 308]. For example, differentially private SGD (DP-SGD) algorithm
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[1, 252], one kind of noisy iterative algorithms, is often used to train ML models while protecting

user privacy [87]. Recently, it has been implemented in open-source libraries, including Opacus [93]

and TensorFlow Privacy [222]. The additive noise in iterative algorithms may also mitigate overfitting

for deep neural networks (DNNs) [200]. From a theoretical perspective, noisy iterative algorithms

can escape local minima [159] or saddle points [108] and generalize well [214].

We derive generalization bounds for the noisy iterative algorithms, which can help understand

recent empirical observations that are not explained by uniform notions of hypothesis class complex-

ity [269, 273]. For example, a neural network trained using true labels exhibits better generalization

ability than a network trained using corrupted labels even when the network architecture is fixed

and perfect training accuracy is achieved [307]. Distribution-independent bounds may not be able

to capture this phenomenon because they are invariant to both true data and corrupted data. In

contrast, our bounds capture this empirical observation, exhibiting a lower value on networks trained

on true labels compared to ones trained on corrupted labels (Figure 3.1). Another example is that a

wider network often has a more favourable generalization capability [206]. This may seem counter-

intuitive at first glance since one may expect that wider networks have a higher VC-dimension and,

consequently, would have a higher generalize gap. Our bounds capture this behaviour and are

decreasing with respect to the neural network width (Figure 3.2).

This chapter is based on our papers [283, 284, 287]:

• Hao Wang, Yizhe Huang, Rui Gao, and Flavio Calmon. “Analyzing the generalization capability

of SGLD using properties of Gaussian channels.” In Advances in Neural Information Processing

Systems (NeurIPS), 2021.

• Hao Wang, Rui Gao, and Flavio P. Calmon. “Generalization bounds for noisy iterative

algorithms using properties of additive noise channels.” under review, 2021.

• Hao Wang, Mario Diaz, José Cândido S. Santos Filho, and Flavio P. Calmon. “An information-

theoretic view of generalization via Wasserstein distance.” In IEEE International Symposium

on Information Theory (ISIT), 2019.

Ensuring Fair Use of Group Attributes

A ML model exhibits disparate treatment [24] if it treats similar data points from distinct individuals

differently based on a group attribute (e.g., age, sex). In applications such as hiring, the existence of
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disparate treatment can be illegal [88]. However, in settings such as healthcare, it can be legal and

ethical to fit a model which presents disparate treatment3. In this case, it is essential to ensure fair

use of the group attribute (i.e., the model uses the group attribute to produce a tailored performance

benefit for each group).

We consider two questions that are central to understanding the above-mentioned principles

through the use of group attributes by a ML model:

(i) When does using group attributes bring the most performance benefit?

(ii) How to learn a model while ensuring fair use of group attributes?

To answer the first question, we introduce precise conditions for fair use of group attributes—i.e.

conditions under which training a separate model for each group produces the most performance

improvement compared with using a group-blind classifier. These conditions are cast in terms of the

difference in probability distributions between groups of individuals and are revealed by powerful

two-point methods for studying min-max problems. Furthermore, I provide an efficient algorithm

that can quickly verify the conditions from data.

To answer the second question, we consider the setting where a black-box classifier exhibits a

performance disparity across groups. We aim to repair the model by improving its performance on

the disadvantaged group without training a new model. Since the model performance relies on the

distribution of input features, is there a hypothetical distribution of input features that minimizes

the performance disparity? We refer to this distribution as a counterfactual distribution and design a

(functional) gradient descent algorithm for learning this distribution from data. The counterfactual

distribution can then be used to repair the model so that it no longer exhibits disparate impact in

deployment.

This chapter is based on our publications [285, 286, 288, 289]:

• Hao Wang, Hsiang Hsu, Mario Diaz, and Flavio P. Calmon. “To split or not to split: The impact

of disparate treatment in classification.” IEEE Transactions on Information Theory (T-IT), 2021.

• Hao Wang, Berk Ustun, and Flavio P. Calmon. “Repairing without retraining: Avoiding

disparate impact with counterfactual distributions.” In International Conference on Machine

Learning (ICML), 2019.

3For example, the Equal Credit Opportunity Act (ECOA) permits a creditor to use an applicant’s age and income for
analyzing credit, as long as such information is used in a fair manner (see 12 CFR §1002.6(b)(2) in [96]).
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• Hao Wang, Berk Ustun, and Flavio P. Calmon. “On the direction of discrimination: An

information-theoretic analysis of disparate impact in machine learning.” In IEEE International

Symposium on Information Theory (ISIT), 2018.

• Hao Wang, Hsiang Hsu, Mario Diaz, and Flavio P. Calmon. “The impact of split classifiers on

group fairness.” In IEEE International Symposium on Information Theory (ISIT), 2021.

An Estimation-Theoretic View of Privacy

Data sharing and publishing is increasingly common within scientific communities [262], businesses

[253], government operations [210], medical fields [256], and beyond. Data is usually shared with an

application in mind, from which the data provider receives some utility. For example, when a user

shares her movie ratings with a streaming service, she receives utility in the form of suggestions of

new, interesting movie recommendations that fit her taste. As a second example, when a medical

research group shares patient data, their aim is to enable a wider community of researchers and

statisticians to learn patterns from that data. Utility is then gained through new scientific discoveries.

The disclosure of non-encrypted data incurs a privacy risk through unwanted inferences. In

our previous examples, the streaming service may infer the user’s political preference (potentially

deemed private by the user) from her movie ratings [199], or an insurance company may determine

the identity of a patient within a medical dataset [239, 256]. The dichotomy between privacy and

utility has been widely studied by computer scientists, statisticians, and information theorists alike.

While specific metrics and models vary among these communities, their desideratum is the same:

to design mechanisms that perturb the data (or functions thereof) while achieving an acceptable

privacy-utility trade-off (PUT).

Our aim is to characterize the fundamental limits of PUT from an estimation-theoretic perspective,

and to design privacy mechanisms that provide estimation-theoretic guarantees. Here, an analyst

is allowed to reconstruct (in a mean-squared error sense) certain functions of the data (utility),

while other private functions should not be reconstructed with distortion below a certain threshold

(privacy). We demonstrate how chi-square information captures the fundamental PUT in this case

and provide bounds for the best PUT. Then we propose a convex program to compute privacy

mechanisms when the functions to be disclosed and hidden are known a priori and the data

distribution is known. Finally, we derive lower bounds on the minimum mean-squared error of

estimating a target private function from the disclosed data. Here the underlying data distribution is
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unknown, but the correlation between the target function and a set of functions which are known to

be hard to infer from the disclosed variable is given.

This chapter is based on our publications [281, 290]:

• Hao Wang, Lisa Vo, Flavio P. Calmon, Muriel Médard, Ken R. Duffy, and Mayank Varia.

“Privacy with estimation guarantees.” IEEE Transactions on Information Theory (T-IT), 2019.

• Hao Wang, and Flavio P. Calmon. “An estimation-theoretic view of privacy.” In Annual

Allerton Conference on Communication, Control, and Computing (Allerton), 2017.

Robustness of Privacy Measures and Mechanisms

A common approach to ensure privacy consists of perturbing the data using a privacy mechanism: a

randomized mapping designed to control private information leakage. Different notions of privacy

leakage have been proposed to capture the ability of different adversaries to learn private information,

e.g., Shannon’s mutual information [229, 240], k-anonymity [257], differential privacy [87], maximal

leakage [131], total variation [227], among others. In addition, privacy mechanisms should also

guarantee the statistical utility of the disclosed data, usually quantified by some measure of similarity

between the original and the perturbed data, e.g., distortion [303], f -divergence [147], minimum

mean-squared error [18]. In general, privacy and utility objectives compete with each other, making

the design of privacy mechanisms a non-trivial task. When data privacy and statistical utility are

measured using information-theoretic quantities (e.g., mutual information), most methods for the

analysis and design of privacy mechanisms rely on the implicit assumption that the data distribution

is, for the most part, known [e.g., 17, 29, 51, 52, 198, 209, 227, 228, 240, 281, 290]. In practice, the

designer has access only to a sample from the true distribution.

In this chapter, we revisit this assumption and study the robustness of information-theoretic

privacy measures and mechanisms to partial knowledge of the input distribution. We first derive

upper bounds for the difference between the privacy-utility guarantees for the empirical and the

true distributions. Our bounds can be applied to a large class of information leakage measures,

including probability of correctly guessing, f -information with f locally Lipschitz, Arimoto’s mutual

information (α-leakage) of order α > 1, Sibson’s mutual information of order α > 1, and maximal

α-leakage of order α > 1. Then we establish the statistical consistency of optimal privacy mechanisms.

Finally, we introduce the notion of uniform privacy mechanisms, which assure privacy for every
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distribution within a specific neighborhood of the empirical distribution. Based on the large deviation

results, the uniform privacy mechanisms deliver privacy guarantees for the true distributions with a

certain probability (depending on the selection of neighborhood).

This chapter is based on our publications [76, 282]:

• Mario Diaz*, Hao Wang*, Flavio P. Calmon, and Lalitha Sankar. “On the robustness of

information-theoretic privacy measures and mechanisms.” IEEE Transactions on Information

Theory (T-IT), 2019. *Equal contribution.

• Hao Wang, Mario Diaz, Flavio P. Calmon, and Lalitha Sankar. “The utility cost of robust

privacy guarantees.” In IEEE International Symposium on Information Theory (ISIT), 2018.
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Chapter 2

Background

We first introduce the notation that is common to all the chapters of this thesis. Then we recall some

fundamental properties of f -divergence that underlie many proofs in this thesis.

2.1 Notation

We denote independence of random variables U and V by U |= V, and write U ∼ V to indicate that U

and V have the same distribution. When U, V, and W form a Markov chain, we write U → V → W.

The minimum mean-squared error (MMSE) of estimating U given V is defined as

mmse(U|V) ≜ min
U→V→Û

E
[
(U − Û)2

]
= E

[
(U −E [U|V])2

]
.

For any real-valued random variable U, we denote the Lp-norm of U as

||U||p ≜ (E [|U|p])1/p.

The set of all functions that applied to a random variable U with distribution PU result in an L2-norm

less than or equal to 1 is given by

L2(PU) ≜ { f : U → R | ∥ f (U)∥2 ≤ 1} . (2.1)

The conditional expectation operators TV|U : L2(PV) → L2(PU) and TU|V : L2(PU) → L2(PV) are

given by (TV|U g)(u) ≜ E [g(V)|U = u] and (TU|V f )(v) ≜ E [ f (U)|V = v], respectively.
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2.2 f -divergence

Csiszár’s f -divergence [70] measures the difference between two probability distributions. Here we

recall the definition and some fundamental properties of f -divergence.

Definition 1. Let f : (0, ∞) → R be a convex function with f (1) = 0 and P, Q be two probability

distributions over a set X ⊆ Rd. The f -divergence between P and Q is defined as

D f (P∥Q) ≜
∫
X

f
(

dP
dQ

)
dQ. (2.2)

Examples of f -divergence include KL-divergence ( f (t) = t log t), total variation distance ( f (t) =

|t − 1|/2), and χ2-divergence ( f (t) = t2 − 1). We provide more examples of f -divergence in

Appendix B.1.

The f -divergence motivates a way of measuring the dependence between a pair of random

variables (X, Y). Specifically, the f -information between (X, Y) is defined as

I f (X; Y) ≜ D f (PX,Y∥PX ⊗ PY) = E
[
D f (PY|X∥PY)

]
, (2.3)

where PX,Y is the joint distribution, PX, PY are the marginal distributions, PY|X is the conditional

distribution, and the expectation is taken over X ∼ PX . In particular, if the KL-divergence is used in

(2.3), the corresponding f -information is the well-known mutual information [246].

2.3 Properties of f -divergence

We review some fundamental properties of f -divergence that will be used in this thesis.

Strong data processing inequalities. The data processing inequality states that if a Markov chain

U → X → Y holds, then

I f (U; Y) ≤ I f (U; X). (2.4)

In other words, no post-processing of X can increase the information about U. Under certain

conditions, the data processing inequality can be sharpened, which leads to a strong data processing

inequality [66, 78], often cast in terms of a contraction coefficient. Next, we recall the contraction

coefficients of f -divergences and show their connection with strong data processing inequalities.
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For a given transition probability kernel PY|X : X → Y , let PY|X ◦ P be the distribution on Y
induced by the push-forward of the distribution P (i.e., the distribution of Y when the distribution

of X is P). The contraction coefficient of PY|X for D f is defined as

η f (PY|X) ≜ sup
P,Q:P ̸=Q

D f (PY|X ◦ P∥PY|X ◦Q)

D f (P∥Q)
∈ [0, 1].

In particular, when the total variation distance is used, the corresponding contraction coefficient

ηTV(PY|X) is known as the Dobrushin’s coefficient [78], which owns an equivalent expression:

ηTV(PY|X) = sup
x,x′∈X

DTV(PY|X=x∥PY|X=x′). (2.5)

The Dobrushin’s coefficient upper bounds all other contraction coefficients [66]: η f (PY|X) ≤ ηTV(PY|X).

Furthermore, for any Markov chain U → X → Y, the contraction coefficients satisfy [see Theorem 5.2

in 223, for a proof]

I f (U; Y) ≤ η f (PY|X) · I f (U; X). (2.6)

When η f (PY|X) < 1, the strict inequality I f (U; Y) < I f (U; X) improves the data processing inequality

and, hence, is referred to as a strong data processing inequality. We refer the reader to Polyanskiy

and Wu [219] and Raginsky [223] for a more comprehensive review on strong data processing

inequalities and Calmon et al. [54] for non-linear strong data processing inequalities in Gaussian

channels.

Gaussian channels. Consider a pair of random variables (X, Y) related by Y = X + mN where X

is lying on X ; m > 0 is a constant; and N ∼ N(0, Id) follows a standard Gaussian distribution. This

model can be regarded as a single use of a Gaussian channel, which has a long history in information

theory and possesses many interesting properties. For example, if X is a compact set, the contraction

coefficients have a non-trivial upper bound

ηKL(PY|X) ≤ ηTV(PY|X) = 1− 2Φ̄
(
diam(X )

2m

)
, (2.7)

where diam(X ) ≜ supx,x′∈X ∥x− x′∥2 is the diameter of X and Φ̄(t) ≜
∫ ∞

t
1√
2π

exp(−v2/2)dv is the

Gaussian complementary cumulative distribution function (CCDF). Another useful property is the

following inequality [see Lemma 3.4.2 in 226, for a proof] which upper bounds the KL-divergence

of the output distributions from the Gaussian channel by the Wasserstein distance of their input
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distributions. It also serves as a fundamental lemma for proving Otto-Villani’s HWI inequality [211]

in the Gaussian case.

Lemma 1. Let X and X′ be a pair of random variables which are independent of N ∼ N(0, Id). Then for any

m > 0

DKL(PX+mN∥PX′+mN) ≤
1

2m2 W2
2(PX , PX′). (2.8)

Here W2(PX , PX′) is the 2-Wasserstein distance equipped with the L2 cost function:

W2
2(PX , PX′) ≜ inf E

[
∥X− X′∥2

2

]
,

where the infimum is taken over all couplings (i.e., joint distributions) of the random variables X and X′ with

marginals PX and PX′ , respectively.

We recall an analogous result [115] which is also used in our proof. It gives an upper bound for

the input-output mutual information of a Gaussian channel.

Lemma 2. Let X be a random variable which is independent of N ∼ N(0, Id). Then for any m > 0

I(X + mN; X) ≤ 1
2m2Var (X) . (2.9)

Converse lower bounds. f -divergence plays an important role in constructing min-max lower

bound in non-parametric estimation theory [304]. Below we recall two examples, Le Cam’s method

[171] and Brown-Low’s lower bound [45], which will be used in this thesis.

Consider estimating a functional of interest θ(P) based on a data point X drawn from the

probability distribution P. For an estimator θ̂ = θ̂(X), we use a loss function ℓ(θ̂, θ(P)) to measure

the accuracy. Assume that we know, a prior, that the probability distribution P ∈ P . Then the

following lower bound holds by Le Cam’s two-point method.

Lemma 3. For any two probability distributions P1, P2 ∈ P ,

inf
θ̂

sup
P∈P

E
[
ℓ(θ̂, θ(P))

]
≥ 1

2
ℓ(θ(P1), θ(P2)) (1−DTV(P1∥P2)) .

Here a single point X is available for constructing the estimator θ̂. On the other hand, one can

extend the above result to product measures if n i.i.d. points are available. In this case, the following
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f -divergence inequality is often useful:

1−DTV(P⊗n
1 ∥P⊗n

2 ) ≥ 1
2
(1−DTV(P⊗n

1 ∥P⊗n
2 )2) ≥ 1

2
exp(−DKL(P⊗n

1 ∥P⊗n
2 )) =

1
2

exp(−nDKL(P1∥P2))

where the second inequality is from [44].

Le Cam’s two-point method hold for any (pseudo-metric) loss function. Now let us consider a

particular loss function–ℓ2 loss. In this case, Brown and Low established the following lower bound

in [45].

Lemma 4. For any two probability distributions P1, P2 ∈ P ,

inf
θ̂

sup
P∈P

E
[
(θ̂ − θ(P))2

]
≥ (θ(P2)− θ(P1))

2(
1 +

√
1 + Dχ2(P2∥P1)

)2 . (2.10)

The following property of χ2-divergence is often useful when applying the above lemma to

product measures.

Dχ2(P⊗n
2 ∥P⊗n

1 ) = (1 + Dχ2(P2∥P1))
n − 1 (2.11)

Principal inertia components. We present some properties of the principal inertia components

(PICs) and show a connection with the χ2-information (i.e., f -information with f (t) = t2 − 1): the

χ2-information is the sum of all PICs. This connection implies an estimation-theoretic interpretation

of the χ2-information. Note that we adopt the definition of PICs presented in [53], but the PICs

predate [53] by many decades [see e.g., 48, 109, 112, 124, 230, 241, 295].

Definition 2 ([53, Definition 1]). Let U and V be random variables with support sets U and V ,

respectively, and joint distribution PU,V . In addition, let f0 : U → R and g0 : V → R be the constant

functions f0(u) = 1 and g0(v) = 1. For k ∈ Z+, we (recursively) define

λk(U; V) ≜ E [ fk(U)gk(V)]2 , (2.12)

where

( fk, gk) ≜ argmax
{

E [ f (U)g(V)]2
∣∣∣ f ∈ L2(PU), g ∈ L2(PV), E

[
f (U) f j(U)

]
= 0,

E
[
g(V)gj(V)

]
= 0, j ∈ {0, . . . , k− 1}

}
.

(2.13)

The values λk(U; V) are called the principal inertia components (PICs) of PU,V . The functions fk and gk

are called the principal functions of PU,V .
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Observe that the PICs satisfy λk(U; V) ≤ 1, since fk ∈ L2(PU), gk ∈ L2(PV), and

|E [ f (U)g(V)]| ≤ ∥ f (U)∥2∥g(V)∥2 ≤ 1.

Thus, from Definition 2, 0 ≤ λk+1(U; V) ≤ λk(U; V) ≤ 1.

The largest PIC satisfies λ1(U; V) = ρm(U; V)2 where ρm(U; V) is the maximal correlation [230],

defined as

ρm(U; V) ≜ max
E[ f (U)]=E[g(V)]=0

E[ f (U)2]=E[g(V)2]=1

E [ f (U)g(V)] . (2.14)

Definition 3 ([53, Definition 2]). For U = [m] and V = [n], let PU,V ∈ Rm×n be a matrix with entries

[PU,V ]i,j = PU,V(i, j), and DU ∈ Rm×m and DV ∈ Rn×n be diagonal matrices with diagonal entries

[DU ]i,i = PU(i) and [DV ]j,j = PV(j), respectively, where i ∈ [m] and j ∈ [n]. We define

QU,V ≜ D−1/2
U PU,VD−1/2

V . (2.15)

We denote the singular value decomposition of QU,V by QU,V = UΣΣΣVT .

Definition 4 ([53, Definition 14]). Let d ≜ min{|U |, |V|} − 1, and λd(U; V) the d-th PIC of PU,V . We

define

δ(PU,V) ≜


λd(U; V) if |V| ≤ |U |,

0 otherwise.
(2.16)

We also denote λd(U; V) and the corresponding principal functions fd, gd as λmin(U; V) and fmin,

gmin, respectively, when the alphabet size is clear from the context.

The next theorem illustrates some different characterizations of the PICs.

Theorem 1 ([53, Theorem 1]). The following characterizations of the PICs are equivalent:

1. The characterization given in Definition 2, where, for fk and gk given in (2.13), gk(V) = E[ fk(U)|V]
∥E[ fk(U)|V]∥2

and fk(U) = E[gk(V)|U]
∥E[gk(V)|U]∥2

.

2. For any k ∈ Z+,

1− λk(U; V) = mmse(hk(U)|V), (2.17)
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where

hk ≜ argmin
{
mmse(h(U)|V)

∣∣∣ ∥h(U)∥2 = 1, E
[
h(U)hj(U)

]
= 0, j ∈ {0, . . . , k− 1}

}
. (2.18)

If λk(U; V) is unique, then hk = fk, given in (2.13).

3.
√

λk(U; V) is the (k + 1)-st largest singular value of QU,V . The principal functions fk and gk in (2.13)

correspond to the columns of the matrices D−1/2
U U and D−1/2

V V, respectively, where QU,V = UΣΣΣVT .

The equivalent characterizations of the PICs in the above theorem have the following intuitive

interpretation: the principal functions can be viewed as a basis that decompose the mean-squared

error of estimating functions of a hidden variable U given an observation V. In particular, for any

zero-mean finite-variance function f : U → R,

mmse( f (U)|V) =
|U |−1

∑
i=1

E [ f (U) fi(U)]2 (1− λi(U; V)).

Finally, the χ2-information between U and V is the sum of all PICs [53, 295]: χ2(U; V) = ∑d
i=1 λi(U; V),

where d = min{|U |, |V|} − 1.
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Chapter 3

Generalization of Noisy Iterative

Algorithms

Many learning algorithms aim to solve the following (possibly non-convex) optimization problem:

min
w∈W

Lµ(w) ≜ E [ℓ(w, Z)] =
∫
Z
ℓ(w, z)dµ(z), (3.1)

where w ∈ W ⊆ Rd is the model parameter (e.g., weights of a neural network) to optimize; µ is

the underlying data distribution that generates Z; and ℓ : W ×Z → R+ is the loss function (e.g.,

0-1 loss). In the context of supervised learning, Z is often composed by a feature vector X and

its corresponding label Y. Since the data distribution µ is unknown, Lµ(w) cannot be computed

directly. In practice, a dataset S ≜ (Z1, · · · , Zn) containing n i.i.d. points Zi ∼ µ is used to minimize

an empirical risk:

min
w∈W

LS(w) ≜
1
n

n

∑
i=1

ℓ(w, Zi). (3.2)

We consider the following (projected) noisy iterative algorithm for solving the empirical risk

optimization in (3.2). The parameter w is initialized with a random point W0 ∈ W and updated

using the following rule:

Wt = ProjW (Wt−1 − ηt · g(Wt−1, {Zi}i∈Bt) + mt · N) , (3.3)

where ηt is the learning rate; N is an additive noise drawn independently from a distribution PN ; mt
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is the magnitude of the noise; Bt ⊆ [n] contains the indices of the data points used at the current

iteration and bt ≜ |Bt|; g is the direction for updating the parameter (e.g., gradient of the loss

function); and

g(Wt−1, {Zi}i∈Bt) ≜
1
bt

∑
i∈Bt

g(Wt−1, Zi). (3.4)

At the end of each iteration, the parameter is projected onto the domain W , i.e., ProjW (w) ≜

argminw′∈W ∥w′ −w∥. The recursion in (3.3) is run T iterations and the final output is a random

variable WT .

The goal of this chapter is to provide an upper bound for the expected generalization gap:

E
[
Lµ(WT)− LS(WT)

]
, (3.5)

where the expectation is taken over the randomness of the training data set S and of the algorithm.

3.1 Overview and Main Contributions

In this chapter, we present three generalization bounds for the noisy iterative algorithms (Section 3.5).

These bounds rely on different kinds of f -divergence but are proved in a uniform manner by

exploring properties of additive noise channels (Section 3.4). Among them, the KL-divergence bound

can deal with sampling with replacement; the total variation bound is often the tightest one; and

the χ2-divergence bound requires the mildest assumption. We apply our results to applications,

including DP-SGD, federated learning, and SGLD (Section 3.6). Under these applications, our

generalization bounds own a simple form and can be estimated from the training data. Finally, we

demonstrate our bounds through numerical experiments (Section 3.7), showing that they can predict

the behavior of the true generalization gap.

Our generalization bounds incorporate a time-decaying factor. This decay factor tightens the

bounds by enabling the impact of early iterations to reduce with time. Our analysis is motivated by

a line of recent works [19, 23, 99] which observed that data points used in the early iterations enjoy

stronger differential privacy guarantees than those occurring late. Accordingly, we prove that if a

data point is used at an early iteration, its contribution to the generalization gap is decreasing with

time due to the cumulative effect of the noise added in the iteration afterward.

The proof techniques of this chapter are based on fundamental tools from information theory. We
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first use an information-theoretic framework, proposed by Russo and Zou [238] and Xu and Raginsky

[300] and further tightened by Bu et al. [47], for deriving algorithmic generalization bounds. This

framework relates the generalization gap in (3.5) with the f -information1 I f (WT ; Zi) between the

algorithmic output WT and each individual data point Zi. However, estimating this f -information

from data is intractable since the underlying distribution is unknown. Given this major challenge,

we connect the noisy iterative algorithms with additive noise channels, a fundamental model used in

data transmission. As a result, we further upper bound the f -information by a quantity that can

be estimated from data by developing new properties of additive noise channels. Moreover, we

incorporate a time-decaying factor into our bounds, which enables the contribution of early iterations

on our bounds to decrease with time. This factor is established by strong data processing inequalities

[66, 78] and has an intuitive interpretation: the dependence between algorithmic output WT and the

data points used in the early iterations is decreasing with time due to external additive noise (i.e.,

I f (WT ; Zi) is decreasing with T for a fixed Zi).

3.2 Related Works

There are significant recent works which adopt the information-theoretic framework [300] for

analyzing the generalization capability of noisy iterative algorithms. Among them, Pensia et al. [214]

initially derived a generalization bound in Corollary 1 and their bound was extended in Proposition 3

of Bu et al. [47] for the SGLD algorithm. Although the framework in Pensia et al. [214] can be applied

to a broad class of noisy iterative algorithms, their bound in Corollary 1 and Proposition 3 in Bu

et al. [47] rely on the Lipschitz constant of the loss function, which makes them independent of

the data distribution. Distribution-independent bounds can be potentially loose since the Lipschitz

constant may be large and may not capture some empirical observations (e.g., label corruption [307]).

Specifically, this Lipschitz constant only relies on the architecture of the network instead of the

weight matrices or the data distribution so it is the same for a network trained from corrupted data

and a network trained from true data.

To obtain a distribution-dependent bound, Negrea et al. [201] improved the analysis in Pensia

et al. [214] by replacing the Lipschitz constant with a gradient prediction residual when analyzing

1The f -information (see (2.3) for its definition) includes a family of measures, such as mutual information, which quantify
the dependence between two random variables.
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the SGLD algorithm. Their follow-up work [118] investigated the Langevin dynamics algorithm

(i.e., full batch SGLD), which was later extended by Gálvez et al. [105] to SGLD, and observed a

time-decaying phenomenon in their experiments. Specifically, [118] incorporated a quantity, namely

the squared error probability of the hypothesis test, into their bound in Theorem 4.2 and this quantity

decays with the number of iterations. This seems to suggest that earlier iterations have a larger

impact on their generalization bound. In contrast, our decay factor indicates that the impact of

earlier iterations is reducing with the total number of iterations. Furthermore, the bound in their

Theorem 4.2 requires a bounded loss function while our χ2-based generalization bound only needs

the variance of the loss function to be bounded. More broadly, Neu et al. [204] investigated the

generalization properties of SGD. However, the generalization bound in their Proposition 3 suffers

from a weaker order O(1/
√

n) when the analysis is applied to the SGLD algorithm.

In addition to the works discussed above, there is a line of papers on deriving SGLD generalization

bounds [175, 196]. Among them, Mou et al. [196] introduced two generalization bounds. The first

one [Theorem 1 of 196], a stability-based bound, achieves O(1/n) rate in terms of the sample size n

but relies on the Lipschitz constant of the loss function which makes it distribution-independent.

The second one [Theorem 2 of 196], a PAC-Bayes bound, replaces the Lipschitz constant by an

expected-squared gradient norm but suffers from a slower rate O(1/
√

n). In contrast, our SGLD

bound in Proposition 4 has order O(1/n) and tightens the expected-squared gradient norm by

the variance of gradients. The PAC-Bayes bound in Mou et al. [196] also incorporates an explicit

time-decaying factor. However, their analysis seems to heavily rely on the Gaussian noise. In contrast,

our generalization bounds include a decay factor for a broad class of noisy iterative algorithms. A

follow-up work by Li et al. [175] combined the algorithmic stability approach with PAC-Bayesian

theory and presented a bound which achieves order O(1/n). However, their bound requires the

scale of the learning rate to be upper bounded by the inverse Lipschitz constant of the loss function.

In contrast, we do not need any assumptions on the learning rate.

A standard approach [see e.g., 122] of deriving a generalization bound for the DP-SGD algorithm

follows two steps: (i) prove that DP-SGD satisfies the (ϵ, δ)-DP guarantees [19, 23, 99, 252, 296]; (ii)

derive/apply a generalization bound that holds for any (ϵ, δ)-DP algorithm [30, 84, 145]. However,

generalization bounds obtained from this procedure are distribution-independent since DP is robust

with respect to the data distribution. In contrast, our bounds in Section 3.6.1 are distribution-

dependent. We extend our analysis and derive a generalization bound in the setting of federated
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learning in Section 3.6.2. A previous work by Yagli et al. [302] also proved a generalization bound for

federated learning in their Theorem 3 but their bound involves a mutual information which could be

hard to estimate from data.

3.3 Preliminaries

Notation. A random variable X is σ-sub-Gaussian if log E [exp λ(X−E [X])] ≤ σ2λ2/2 for any

λ ∈ R. For a random vector X = (X1, · · · , Xd), we define its variance and minimum mean absolute

error (MMAE) as

Var (X) ≜ inf
a∈Rd

E
[
∥X− a∥2

2

]
, (3.6)

mmae(X) ≜ inf
a∈Rd

E [∥X− a∥1] . (3.7)

The vector a which minimizes (3.6) and (3.7) are

argmin
a∈Rd

E
[
∥X− a∥2

2

]
= (E [X1] , · · · , E [Xd]), (3.8)

argmin
a∈Rd

E [∥X− a∥1] = (median(X1), · · · ,median(Xd)), (3.9)

where median(Xi) is the median of the random variable Xi.

Information-theoretic generalization bounds. A recent work by Xu and Raginsky [300] provided

a framework for analyzing algorithmic generalization. Specifically, they considered a learning

algorithm as a channel (i.e., conditional probability distribution) that takes a training set S as

input and outputs a parameter W. Furthermore, they derived an upper bound for the expected

generalization gap using the mutual information I(W; S). This bound was later tightened by Bu

et al. [47] using an individual sample mutual information. By adapting their proof and leveraging

variational representations of f -divergence [207], we present another two generalization bounds

based on different kinds of f -information.

Lemma 5. Consider a learning algorithm which takes a dataset S = (Z1, · · · , Zn) as input and outputs W.

• [Proposition 1 in 47] If the loss ℓ(w, Z) is σ-sub-Gaussian under Z ∼ µ for all w ∈ W , then

∣∣E [Lµ(W)− LS(W)
]∣∣ ≤ √2σ

n

n

∑
i=1

√
I(W; Zi), (3.10)
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where I(W; Zi) is the mutual information (i.e., f -information with f (t) = t log t).

• If the loss ℓ(w, Z) is upper bounded by a constant A > 0, then

∣∣E [Lµ(W)− LS(W)
]∣∣ ≤ A

n

n

∑
i=1

T(W; Zi), (3.11)

where T(W; Zi) is the T-information (i.e., f -information with f (t) = |t− 1|/2).

• If the variance of the loss function is finite (i.e., Var (ℓ(W; Z)) < ∞), then

∣∣E [Lµ(W)− LS(W)
]∣∣ ≤ √Var (ℓ(W; Z))

n

n

∑
i=1

√
χ2(W; Zi), (3.12)

where χ2(W; Zi) is the χ2-information (i.e., f -information with f (t) = t2 − 1) and Z is a fresh data

point which is independent of W (i.e., (W, Z) ∼ PW ⊗ µ).

We apply Lemma 5 to analyze the generalization capability of noisy iterative algorithms. Estimat-

ing the f -information in Lemma 5 from data is intractable. Hence, we further upper bound these

f -information by exploring properties of additive noise channels in the next section. Furthermore,

we also incorporate a time-decaying factor into our bound, which is established by strong data

processing inequalities, recalled in the upcoming subsection.

Although our analysis is applicable for any f -information, we focus on the three f -information in

Lemma 5 since:

• Mutual information is often easier to work with due to its many useful properties. For example, the

chain rule of mutual information plays an important role for handling sampling with replacement

(see Section 3.6.3).

• T-information often yields a tighter bound than (3.10) and (3.12). This can be seen by the following

f -divergence inequalities [see Eq. 1 and 94 in 242]:

√
2T(W; Zi) ≤

√
I(W; Zi) ≤

√
log(1 + χ2(W; Zi)) ≤

√
χ2(W; Zi).

Furthermore, the T-information can be used to analyze a broader class of noisy iterative algorithms.

For example, when the additive noise is drawn from a distribution with bounded support, the

other two f -information may lead to an infinite generalization bound while the T-information can

still give a non-trivial bound (see the last row in Table 3.1).

• χ2-information requires the mildest assumptions. Apart from bounded loss functions, it is often
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hard to verify the sub-Gaussianity of ℓ(w, Z) for all w. The advantage of (3.12) is that it replaces

the sub-Gaussian constant with the variance of the loss function.

Remark 1. Using f -information for bounding generalization gap has appeared in prior literature

[see e.g., 4, 7, 91, 106, 138, 143, 283]. More broadly, there are significant recent works [see e.g.,

14, 117, 123, 144, 185, 225, 254, 302, 311] on deriving new information-theoretic generalization

bounds and applying them to different applications. The reason we adopt Lemma 5 for analyzing

noisy iterative algorithms is that it enables us to incorporate a time-decaying factor into our bounds.

3.4 Properties of Additive Noise Channels

Additive noise channels have a long history in information theory. Here we show two important

properties of additive noise channels which will be used for deriving the generalization bounds in

the next section. The first property (Lemma 6) leads to a decay factor into our bounds. The second

property (Lemma 7) produces computable generalization bounds.

Consider a single use of an additive noise channel. Let (X, Y) be a pair of random variables

related by Y = X + mN where X ∈ X ; m > 0 is a constant; and N represents an independent noise.

In other words, the conditional distribution of Y given X can be characterized by PY|X=x = Px+mN .

If X is a compact set, the contraction coefficients often have a non-trivial upper bound, leading to a

strong data processing inequality. This is formalized in the following lemma whose proof follows

directly from the definition of the Dobrushin’s coefficient in (2.5) and the fact that the Dobrushin’s

coefficient is a universal upper bound of all the contraction coefficients.

Lemma 6. Let N be a random variable which is independent of (U, X). For a given norm ∥ · ∥ on a compact

set X ⊆ Rd and m, A > 0, we define

δ(A, m) ≜ sup
∥x−x′∥≤A

DTV (Px+mN∥Px′+mN) . (3.13)

Then the Markov chain U → X → X + mN holds and

I f (U; X + mN) ≤ δ(diam(X ), m) · I f (U; X), (3.14)

where diam(X ) ≜ supx,x′∈X ∥x− x′∥ is the diameter of X .

Computing f -information in general is intractable when the underlying distribution is unknown.

Hence, we further upper bound the f -information in Lemma 5 by a quantity which is easier to
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Noise Type CKL(x, x′; m) Cχ2 (x, x′; m) CTV(x, x′; m) δ(A, m)

Gaussian ∥x−x′∥2
2

2m2 exp
( ∥x−x′∥2

2
m2

)
− 1 ∥x−x′∥2

2m 1− 2Φ̄
(

A
2m

)
Laplace ∥x−x′∥1

m exp
( ∥x−x′∥1

m

)
− 1

√
∥x−x′∥1

2m 1− exp
(
− A

m

)
Uniform on [−1, 1] ∞I[x ̸=x′ ] ∞I[x ̸=x′ ] min

{
1,
∣∣∣ x−x′

2m

∣∣∣} min
{

1, A
2m

}
Table 3.1: Closed-form expressions (or upper bounds if in blue color) of C f (x, x′; m) (see (3.15) for its definition) and
δ(A, m) (see (3.13) for its definition). The function δ(A, m) is equipped with the 2-norm for Gaussian distribution and
1-norm for Laplace distribution. We denote the the Gaussian complementary cumulative distribution function (CCDF) by
Φ̄(x) ≜

∫ ∞
x

1√
2π

exp(−v2/2)dv and define ∞ · 0 = 0 as convention. The proof is deferred to Appendix A.1.2.

compute. To achieve this goal, we introduce another property of additive noise channels. Specifically,

let Y = X + mN and Y′ = X′ + mN be the output variables from the same additive noise channel

with input variables X and X′, respectively. Then the f -divergence in the output space can be upper

bounded by the optimal transport cost in the input space.

Lemma 7. Let N be a random variable which is independent of (X, X′). For x, x′ ∈ Rd and m > 0, we define

a cost function

C f (x, x′; m) ≜ D f (Px+mN∥Px′+mN) . (3.15)

Then for any m > 0, we have

D f (PX+mN∥PX′+mN) ≤W(PX , PX′ ; m). (3.16)

Here W(PX , PX′ ; m) is the optimal transport cost:

W(PX , PX′ ; m) ≜ inf E
[
C f (X, X′; m)

]
, (3.17)

where the infimum is taken over all couplings (i.e., joint distributions) of the random variables X and X′ with

marginals PX and PX′ , respectively.

Proof. See Appendix A.1.1.

Lemmas 6 and 7 show that the functions δ(A, m) and C f (x, x′; m) can be useful for sharpening the

data processing inequality and upper bounding the f -information in Lemma 5. We demonstrate in

Table 3.1 that these functions can be expressed in closed-form for specific additive noise distributions.

Remark 2. Let N be drawn from a Gaussian distribution. Substituting the closed-form expression of
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CKL(x, x′; m) from Table 3.1 into Lemma 7 leads to

DKL(PX+mN∥PX′+mN) ≤
1

2m2 W2
2(PX , PX′) (3.18)

where W2(PX , PX′) is the 2-Wasserstein distance equipped with the L2 cost function:

W2
2(PX , PX′) ≜ inf E

[
∥X− X′∥2

2

]
.

This inequality serves as a fundamental building block for proving Otto-Villani’s HWI inequality

[211] in the Gaussian case [42, 226].

3.5 Generalization Bounds for Noisy Iterative Algorithms

In this section, we present our main result—generalization bounds for noisy iterative algorithms.

First, by leveraging strong data processing inequalities, we prove that the amount of information

about the data points used in early iterations decays with time. Accordingly, our generalization

bounds incorporate a time-decaying factor which enables the impact of early iterations on our

bounds to reduce with time. Second, by using properties of additive noise channels developed in

the last section, we further upper bound the f -information by a quantity which is often easier to

estimate. The above two aspects correspond to Lemma 8 and 9 which are the basis of our main result

in Theorem 2.

Before diving into the analysis, we first discuss assumptions made in this chapter.

Assumption 1. The mini-batch indices (B1, · · · ,BT) in (3.3) are specified before the algorithm is run and

data are drawn without replacement.

If the mini-batches are selected when the algorithm is run, one can analyze the expected gen-

eralization gap by first conditioning on B ≜ (B1, · · · ,BT) and then taking an expectation over the

randomness of B:

E
[
Lµ(WT)− LS(WT)

]
= E

[
E
[
Lµ(WT)− LS(WT) | B

]]
.

Our analysis can be extended to the case where data are drawn with replacement (see Proposition 4)

by using the chain rule for mutual information.

Assumption 2. The parameter domain W is compact and ∥g(w, z)∥ ≤ K for all w, z. We denote the

diameter ofW by D ≜ supw,w′∈W ∥w−w′∥.
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Our generalization bounds rely on the second assumption mildly. In fact, this assumption only

affects the time-decaying factor in our bounds which is always upper bounded by 1. If we remove

this assumption, our bounds still hold though the decay factor disappears.

Now we are in a position to derive generalization bounds under the above assumptions. As a con-

sequence of strong data processing inequalities, the following lemma indicates that the information

of a data point Zi contained in the algorithmic output WT will reduce with time T.

Lemma 8. Under Assumption 1, 2, if a data point Zi is used in the t-th iteration, then

I f (WT ; Zi) ≤ I f (Wt; Zi) ·
T

∏
t′=t+1

δ(D + 2ηt′K, mt′), (3.19)

where the function δ(·, ·) is defined in (3.13).

Proof. For the t-th iteration, we rewrite the recursion in (3.3) as

Ut = Wt−1 − ηt · g(Wt−1, {Zi}i∈Bt) (3.20a)

Vt = Ut + mt · N (3.20b)

Wt = ProjW (Vt) . (3.20c)

Let Zi be a data point used at the t-th iteration. Under Assumption 1, the following Markov chain

holds:

Zi → Ut → Vt →Wt → · · · →WT−1 → UT → VT →WT . (3.21)

Let UT be the range of UT . By Assumption 2 and the triangle inequality,

diam(UT) ≤ diam(W) + 2ηTK = D + 2ηTK.

Now we leverage the strong data processing inequality in Lemma 6 and obtain

I f (WT ; Zi) ≤ I f (VT ; Zi)

≤ δ(D + 2ηTK, mT) · I f (UT ; Zi)

≤ δ(D + 2ηTK, mT) · I f (WT−1; Zi),

where the first and last steps are due to the data processing inequality. Applying this procedure

recursively leads to the desired conclusion.

For many types of noise (e.g., Gaussian or Laplace noise), the function δ(·, ·) is strictly smaller
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than 1 (see Table 3.1). In this case, the information about the data points used in early iterations is

reducing via the multiplicative factor in (3.19). Furthermore, one can even prove that I f (WT ; Zi)→ 0

as T → ∞ if the magnitude of the additive noise in (3.3) has a lower bound.

Lemma 8 explains how our generalization bounds in Theorem 2 incorporate a time-decaying

factor. However, it still involves a f -information I f (Wt; Zi), which can be hard to compute from data.

Next, we further upper bound this f -information by using properties of additive noise channels

developed in the last section (see Lemma 7).

Lemma 9. Under Assumption 1, if a data point Zi is used at the t-th iteration, then

I f (Wt; Zi) ≤ E

[
C f

(
g(Wt−1, Z), g(Wt−1, Z̄);

mtbt

ηt

)]
, (3.22)

where the function C f (·, ·; ·) is defined in (3.15) and the expectation is taken over (Wt−1, Z, Z̄) ∼ PWt−1 ⊗
µ⊗ µ.

Proof. Recall the definition of Ut, Vt in (3.20). The data processing inequality yields

I f (Wt; Zi) ≤ I f (Vt; Zi). (3.23)

By the definition of f -information, we can write

I f (Vt; Zi) = E
[
D f (PVt |Zi

∥PVt)
]
=
∫
Z

D f (PVt |Zi=z∥PVt)dµ(z). (3.24)

Since Vt = Ut + mt · N by its definition, Lemma 7 leads to

D f

(
PVt |Zi=z∥PVt

)
≤W(PUt |Zi=z, PUt ; mt). (3.25)

To further upper bound the above optimal transport cost, we construct a special coupling. Let Wt−1

be the output of the noisy iterative algorithm at the (t− 1)-st iteration. Then we introduce two

random variables:

U∗z ≜Wt−1 −
ηt

bt

(
∑

j∈Bt ,j ̸=i
g(Wt−1, Zj) + g(Wt−1, z)

)
,

U∗ ≜Wt−1 −
ηt

bt
∑

j∈Bt

g(Wt−1, Zj).

Here U∗z and U∗ have marginals PUt |Zi=z and PUt , respectively. By the definition of optimal transport
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cost in (3.17), we have

W
(

PUt |Zi=z, PUt ; mt

)
≤ E

[
C f (U∗z , U∗; mt)

]
. (3.26)

The property of C f (x, y; m) in Lemma 23 yields

E
[
C f (U∗z , U∗; mt)

]
= E

[
C f

(
−ηt

bt
g(Wt−1, z),−ηt

bt
g(Wt−1, Zi); mt

)]
= E

[
C f

(
ηt

bt
g(Wt−1, Zi),

ηt

bt
g(Wt−1, z); mt

)]
= E

[
C f

(
g(Wt−1, Zi), g(Wt−1, z);

mtbt

ηt

)]
. (3.27)

Since the data point Zi is only used at the t-th iteration, it is independent of Wt−1. We introduce two

independent copies Z, Z̄ of Zi such that (Wt−1, Z, Z̄) ∼ PWt−1 ⊗ µ⊗ µ. Combining (3.24–3.27) and

using Tonelli’s theorem lead to

I f (Vt; Zi) ≤ E

[
C f

(
g(Wt−1, Z), g(Wt−1, Z̄);

mtbt

ηt

)]
. (3.28)

Substituting (3.28) into (3.23) gives the desired conclusion.

With Lemma 5, 8, and 9 in hand, we now present the main result in this section: three generaliza-

tion bounds for noisy iterative algorithms under different assumptions.

Theorem 2. Suppose that Assumption 1, 2 hold.

• If the loss ℓ(w, Z) is σ-sub-Gaussian under Z ∼ µ for all w ∈ W , the expected generalization gap

E
[
Lµ(WT)− LS(WT)

]
can be upper bounded by

√
2σ

n

T

∑
t=1

bt

√√√√E

[
CKL

(
g(Wt−1, Z), g(Wt−1, Z̄);

mtbt

ηt

)] T

∏
t′=t+1

δ(D + 2ηt′K, mt′). (3.29)

• If the loss function is upper bounded by a constant A > 0, the expected generalization gap E
[
Lµ(WT)− LS(WT)

]
can be upper bounded by

A
n

T

∑
t=1

btE

[
CTV

(
g(Wt−1, Z), g(Wt−1, Z̄);

mtbt

ηt

)] T

∏
t′=t+1

δ(D + 2ηt′K, mt′). (3.30)

• If the variance of the loss function is finite (i.e., Var (ℓ(WT ; Z)) < ∞), the expected generalization gap
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E
[
Lµ(WT)− LS(WT)

]
can be upper bounded by

σ

n

T

∑
t=1

bt

√√√√E

[
Cχ2

(
g(Wt−1, Z), g(Wt−1, Z̄);

mtbt

ηt

)] T

∏
t′=t+1

δ(D + 2ηt′K, mt′), (3.31)

where σ ≜
√

Var (ℓ(WT ; Z)) with (WT , Z) ∼ PWT ⊗ µ.

Proof. See Appendix A.2.1.

Our generalization bounds involve the information (e.g., step size ηt, magnitude of noise mt,

and batch size bt) at all iterations. Moreover, our bounds are distribution-dependent through the

expectation term. Finally, since the function δ is often strictly smaller than 1 (see Table 3.1 for some

examples), the multiplicative factor ∏T
t′=t+1 δ(D + 2ηt′K, mt′) enables the impact of early iterations

on our bounds to reduce with time.

The generalization bounds in Theorem 2 may seem contrived at first glance as they rely on the

functions δ and C f defined in (3.13) and (3.15). However, in the next section, we will show that these

bounds can be significantly simplified when we apply them to real applications. Furthermore, we

will also compare the advantage of each bound under these applications.

3.6 Applications

We demonstrate the generalization bounds in Theorem 2 through several applications in this section.

3.6.1 Differentially Private Stochastic Gradient Descent (DP-SGD)

Differentially private stochastic gradient descent (DP-SGD) is a variant of SGD where noise is added

to a stochastic gradient estimator in order to ensure privacy of each individual record. We recall an

implementation of (projected) DP-SGD [see e.g., Algorithm 1 in 99]. At each iteration, the parameter

of the empirical risk is updated using the following rule:

Wt = ProjW (Wt−1 − η (g(Wt−1, {Zi}i∈Bt) + N)) , (3.32)

where N is an additive noise; Bt contains the indices of the data points used at the current iteration

and bt ≜ |Bt|; the function g indicates a direction for updating the parameter. The recursion in (3.32)

is run for T iterations and we assume that data are drawn without replacement. At the end of each
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iteration, the parameter is projected onto a compact domainW . We denote the diameter ofW by D.

The output from the DP-SGD algorithm is the last iterate WT . Finally, we assume that

sup
w∈W ,z∈Z

∥g(w, z)∥ ≤ K. (3.33)

This assumption can be satisfied by gradient clipping and is crucial for guaranteeing differential

privacy as it controls the sensitivity of each update.

The differential privacy guarantees of the DP-SGD algorithm have been extensively studied in

the literature [see e.g., 19, 23, 99, 252, 296]. Here we consider a different angle: the generalization of

DP-SGD. We derive generalization bounds for the DP-SGD algorithm under Laplace and Gaussian

mechanisms by using our Theorem 2.

Proposition 1 (Laplace mechanism). Suppose that the additive noise N in (3.32) follows a standard

multivariate Laplace distribution. LetW be equipped with the 1-norm and q ≜ 1− exp (−(D + 2ηK)/η) ∈
(0, 1).

• If the loss ℓ(w, Z) is σ-sub-Gaussian under Z ∼ µ for all w ∈ W , then

E
[
Lµ(WT)− LS(WT)

]
≤ 2σ

n

T

∑
t=1

√
bt ·mmae (g(Wt−1, Z)) · qT−t. (3.34)

• If the loss function is upper bounded by A > 0, then

E
[
Lµ(WT)− LS(WT)

]
≤
√

2A
n

T

∑
t=1

√
bt ·E

[√
∥g(Wt−1, Z)− e∥1

]
· qT−t, (3.35)

where e ≜ median (g(Wt−1, Z)).

• If the variance of the loss function is bounded (i.e., Var (ℓ(WT ; Z)) < ∞), then

E
[
Lµ(WT)− LS(WT)

]
≤ σ

n

T

∑
t=1

√
bt ·E [exp (2 ∥g(Wt−1, Z)− e∥1)− 1] · qT−t, (3.36)

where σ =
√

Var (ℓ(WT ; Z)) and e ≜ median (g(Wt−1, Z)).

Proof. See Appendix A.3.1.

Proposition 2 (Gaussian mechanism). Suppose that the additive noise N in (3.32) follows a standard

multivariate Gaussian distribution. LetW be equipped with the 2-norm and q ≜ 1− 2Φ̄ ((D + 2ηK)/2η) ∈
(0, 1) with Φ̄(·) being the Gaussian CCDF.
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• If the loss ℓ(w, Z) is σ-sub-Gaussian under Z ∼ µ for all w ∈ W , then

E
[
Lµ(WT)− LS(WT)

]
≤ 2σ

n

T

∑
t=1

√
Var (g(Wt−1, Z)) · qT−t. (3.37)

• If the loss function is upper bounded by A > 0, then

E
[
Lµ(WT)− LS(WT)

]
≤ A

n

T

∑
t=1

E [∥g(Wt−1, Z)− e∥2] · qT−t, (3.38)

where e ≜ E [g(Wt−1, Z)].

• If the variance of the loss function is bounded (i.e., Var (ℓ(WT ; Z)) < ∞), then

E
[
Lµ(WT)− LS(WT)

]
≤ σ

n

T

∑
t=1

√
E
[
exp

(
4 ∥g(Wt−1, Z)− e∥2

2

)
− 1
]
· qT−t, (3.39)

where σ =
√

Var (ℓ(WT ; Z)) and e ≜ E [g(Wt−1, Z)].

Proof. See Appendix A.3.1.

Our Theorem 2 leads to three generalization bounds for each DP-SGD mechanism. We discuss

the advantage of each bound in the following remark by focusing on the Gaussian mechanism.

Remark 3. We first assume that the loss function is upper bounded by A, leading to an A/2-sub-

Gaussian loss ℓ(w, Z) and
√

Var (ℓ(WT ; Z)) ≤ A/2. Since

E [X] ≤
√

E [X2] ≤ 1
2

√
E [exp(4X2)− 1],

then for e ≜ E [g(Wt−1, Z)]

E [∥g(Wt−1, Z)− e∥2] ≤
√

Var (g(Wt−1, Z)) ≤ 1
2

√
E
[
exp

(
4 ∥g(Wt−1, Z)− e∥2

2

)
− 1
]
.

Therefore, we have

(3.38) ≤ (3.37) ≤ (3.39).

In other words, the total-variation bound in (3.30) yields the tightest generalization bound (3.38)

for the DP-SGD algorithm. On the other hand, the χ2-divergence bound in (3.31) leads to a bound

(3.39) that requires the mildest assumption. At this moment, it seems unclear what the advantage of

the KL-divergence bound is. Nonetheless, we will show in Section 3.6.3 that the nice properties of

mutual information (e.g., chain rule) help extend our analysis to the general setting where data are

drawn with replacement.
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A standard approach [see e.g., 122] for analyzing the generalization of the DP-SGD algorithm

often follows two steps: establish (ϵ, δ)-differential privacy guarantees for the DP-SGD algorithm

and prove/apply a generalization bound that holds for any (ϵ, δ)-differentially private algorithms.

However, generalization bounds obtained in this manner are distribution-independent since differen-

tial privacy is robust with respect to the data distribution. As observed in existing literature [see

e.g., 307] and our Figure 3.1, machine learning models trained under different data distributions

can exhibit completely different generalization behaviors. Our bounds take into account the data

distribution through the expectation terms (or mmae, variance).

Our generalization bounds can be estimated from data. Take the bound in (3.37) as an example.

If sufficient data are available at each iteration, we can estimate the variance term by the population

variance of {g(Wt−1, Zi) | i ∈ Bt} since Wt−1 is independent of Zi for i ∈ Bt. Alternatively, we can

draw a hold-out set for estimating the variance term at each iteration.

3.6.2 Federated Learning (FL)

Federated learning (FL) [193] is a setting where a model is trained across multiple clients (e.g., mobile

devices) under the management of a central server while the training data are kept decentralized.

We recall the federated averaging algorithm with local-update DP-SGD in Algorithm 1 and refer the

readers to Kairouz et al. [146] for a more comprehensive review.

Algorithm 1 Federated averaging (local DP-SGD).
Input:

Total number of clients N and clients per round C
Total global updates T and local updates M
DP-SGD learning rate η

Initialize: W0 randomly selected fromW
for t = 1, · · · , T global steps do

Server chooses a subset St of C clients
Server sends Wt−1 to all selected clients
for each client k ∈ St in parallel do

Initialize Wk
t,0 ←Wt−1

for j = 1, · · · , M local steps do
Draw b fresh data points {Zk

i }i∈[b] and noise N ∼ N(0, Id)

Update the parameter Wk
t,j ← ProjW

(
Wk

t,j−1 − η
(

g
(

Wk
t,j−1, {Zk

i }i∈[b]
)
+ N

))
end for
Send Wk

t,M back to the server
end for
Server aggregates the parameter Wt =

1
C ∑k∈St

Wk
t,M

end for
Output: WT
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It is crucial to be able to monitor the performance of the global model on each client. Although the

global model could achieve a desirable performance on average, it may fail to achieve high accuracy

for each local client. This is because in the federated learning setting, data are typically unbalanced

(different clients own different number of samples) and not identically distributed (data distribution

varies across different clients). Since in practice clients may not have an extra hold-out dataset to

evaluate the performance of the global model, they can instead compute the loss of the model on

their training set and compensate the mismatch by the generalization gap (or its upper bound). It is

worth noting that this approach of monitoring model performance is completely decentralized as the

clients do not need to share their data with the server and all the computation can be done locally.

As discussed in Remark 3, the total variation bound in (3.30) often leads to the tightest generalization

bound so we recast it under the setting of FL.

Proposition 3. Let Tk ⊂ [T] contain the indices of global iterations in which the k-th client interacts with the

server. If the loss function is upper bounded by A > 0, the expected generalization gap of the k-th client has an

upper bound:

E
[
Lµk (WT)− LSk (WT)

]
≤ A

nk
∑

t∈Tk

M

∑
j=1

E
[
∥g(Wk

t,j−1, Zk)− e∥2

]
· qM(T+1−t)−j,

where nk is the number of training data from the k-th client, e ≜ E
[

g(Wk
t,j−1, Zk)

]
, and

q ≜ 1− 2Φ̄

(√
C(D + 2ηK)

2η

)
∈ (0, 1)

with D being the diameter ofW , K ≜ supw,z ∥g(w, z)∥2, and Φ̄(·) being the Gaussian CCDF.

Proof. See Appendix A.3.2.

Yagli et al. [302] introduced a generalization bound in the context of federated learning. However,

their bound in Theorem 3 involves a mutual information. Here we replace the mutual information

with an expectation term. This improvement allows local clients to compute our bound from their

training data more reliably.

3.6.3 Stochastic Gradient Langevin Dynamics (SGLD)

We analyze the generalization gap of the stochastic gradient Langevin dynamics (SGLD) algorithm

[110, 293]. We start by recalling a standard framework of SGLD. The dataset S is first divided into m
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disjoint mini-batches:

S =
m⋃

j=1

Sj, where |Sj| = b and Sj ∩ Sk = ∅ for j ̸= k.

We initialize the parameter of the empirical risk with a random point W0 ∈ W and update using the

following rule:

Wt = Wt−1 − ηt∇w ℓ̂(Wt−1, SBt) +

√
2ηt

βt
N, (3.40)

where ηt is the learning rate; βt is the inverse temperature; N is drawn independently from a

standard Gaussian distribution; Bt ∈ [m] is the mini-batch index; ℓ̂ is a surrogate loss (e.g., hinge

loss); and

∇w ℓ̂(Wt−1, SBt) ≜
1
b ∑

Z∈SBt

∇w ℓ̂(Wt−1, Z). (3.41)

We study a general setting where the output from SGLD can be any function of the parameters

across all iterations (i.e., W = f (W1, · · · , WT)), including the setting considered before where W =

WT . For example, the output can be an average of all iterates (i.e., Polyak averaging) W = 1
T ∑t Wt or

the parameter which achieves the smallest value of the loss function W = argminWt
Lµ(Wt).

Alas, Theorem 2 cannot be applied directly to the SGLD algorithm because the Markov chain in

(3.21) does not hold any more when data are drawn with replacement. In order to circumvent this

issue, we develop a different proof technique by using the chain rule for mutual information.

Proposition 4. If the loss function ℓ(w, Z) is σ-sub-Gaussian under Z ∼ µ for all w ∈ W , then

E
[
Lµ(W)− LS(W)

]
≤
√

2bσ

2n

m

∑
j=1

√
∑

t∈Tj

βtηt · Var
(
∇w ℓ̂(Wt−1, Sj)

)
,

where the set Tj contains the indices of iterations in which the mini-batch Sj is used.

Proof. See Appendix A.3.3.

Our bound incorporates the gradient variance which measures a particular kind of “flatness” of

the loss landscape. We note that a recent work [137] has observed empirically that the variance of

gradients is predictive of and highly correlated with the generalization gap of neural networks. Here

we evidence this connection from a theoretical viewpoint by incorporating the gradient variance into

the generalization bound.
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Unfortunately, our generalization bound does not incorporate a decay factor2 anymore. To

understand why it happens, let us imagine an extreme scenario in which the SGLD algorithm

outputs all the iterates (i.e., W = (W1, · · · , WT)). For a data point Zi used at the t-th iteration, the

data processing inequality implies that

I(W1, · · · , WT ; Zi) ≥ I(Wt; Zi).

Hence, it is impossible to have I(W1, · · · , WT ; Zi)→ 0 as T → ∞ unless I(Wt; Zi) = 0.

Many existing SGLD generalization bounds [e.g., 175, 196, 201, 214] are expressed as a sum of

errors associated with each training iteration. In order to compare with these results, we present an

analogous bound in the following corollary. This bound is obtained by combining a key lemma for

proving Proposition 4 with Minkowski inequality and Jensen’s inequality so it is often much weaker

than Proposition 4.

Corollary 1. If the loss function ℓ(w, Z) is σ-sub-Gaussian under Z ∼ µ for all w ∈ W , the expected

generalization gap of the SGLD algorithm can be upper bounded by

√
2σ

2
min

 1
n

T

∑
t=1

√
βtηt · Var

(
∇w ℓ̂(Wt−1, Z†

t )
)

,

√√√√ 1
bn

T

∑
t=1

βtηt · Var
(
∇w ℓ̂(Wt−1, Z†

t )
) ,

where Z†
t is any data point used in the t-th iteration.

Proof. See Appendix A.3.4.

Our bound is distribution-dependent through the variance of gradients in contrast with Corol-

lary 1 of Pensia et al. [214], Proposition 3 of Bu et al. [47], and Theorem 1 of Mou et al. [196],

which rely on the Lipschitz constant: supw,z ∥∇w ℓ̂(w, z)∥2. These bounds fail to explain some

generalization phenomena of DNNs, such as label corruption [307], because the Lipschitz constant

takes a supremum over all possible weight matrices w and data points z. In other words, this

Lipschitz constant only relies on the architecture of the network instead of the weight matrices or

data distribution. Hence, it is the same for a network trained from corrupted data and a network

trained from true data. We remark that the Lipschitz constant used by Bu et al. [47], Mou et al.

[196], Pensia et al. [214] is different from the Lipschitz constant of the function corresponding to

a network w.r.t. the input variable. The latter one has been used in the literature [see e.g., 27] for

2We note that the analysis in Mou et al. [196] requires W = WT . Hence, in the setting we consider (i.e., W is a function of
W1, · · · , WT), it is unclear if it is possible to include a decay factor in the bound.
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deriving generalization bounds and, to some degree, can capture generalization phenomena, such as

label corruption.

The order of our generalization bound in Corollary 1 is min
(

1
n ∑T

t=1
√

βηt,
√

β
bn ∑T

t=1 ηt

)
. It is

tighter than Theorem 2 of Mou et al. [196] whose order is
√

β
n ∑T

t=1 ηt. Our bound is applicable

regardless of the choice of learning rate while the bound in Li et al. [175] requires the scale of the

learning rate to be upper bounded by the reciprocal of the Lipschitz constant. Our Corollary 1 has

the same order with Negrea et al. [201] but we incorporate an additional decay factor when applying

our bounds to the DP-SGD algorithm (see Proposition 2) and numerical experiments suggest that

our bound is more favourably correlated with the true generalization gap [see Table 1 in 287].

3.7 Numerical Experiments

In this section, we demonstrate our generalization bound (Proposition 4) through numerical experi-

ments on the MNIST dataset [172], CIFAR-10 dataset [164], and SVHN dataset [203], showing that it

can predict the behavior of the true generalization gap.

3.7.1 Corrupted Labels

As observed in Zhang et al. [307], DNNs have the potential to memorize the entire training dataset

even when a large portion of the labels are corrupted. For networks with identical architecture,

those trained using true labels have better generalization capability than those ones trained using

corrupted labels, although both of them achieve perfect training accuracy. Unfortunately, distribution-

independent bounds, such as the ones using VC-dimension, may not be able to capture this

phenomenon because they are invariant for both true data and corrupted data. In contrast, our

bound quantifies this empirical observation, exhibiting a lower value on networks trained on true

labels compared to ones trained on corrupted labels (Figure 3.1).

In our experiment, we randomly select 5000 samples as our training dataset and change the label

of α ∈ {0%, 25%, 50%, 75%} of the training samples. Then we use the SGLD algorithm to train a

neural network under different corruption level. The training process continues until the training

accuracy is 1.0 (see Figure 3.1 Left). We compare our generalization bound with the generalization

gap in Figure 3.1 Middle and Right. As shown, both our bound and the generalization gap are

increasing w.r.t. the corruption level in the last epoch. Furthermore, the curve of our bound has very

36



Figure 3.1: Illustration of our generalization bound in Proposition 4. We use the SGLD algorithm to train 3-layer neural
networks on MNIST (top row) and convolutional neural networks on CIFAR-10 (middle row) and SVHN (bottom row)
when the training data have different label corruption level α ∈ {0%, 25%, 50%, 75%}. Left column: training accuracy.
Middle column: empirical generalization gap. Right column: empirical generalization bound.

similar shape with the generalization gap. Finally, we observe that the generalization gap tends to be

stable since the algorithm converges (Figure 3.1 Middle). Our generalization bound captures this

phenomenon (Figure 3.1 Right) as the variance of gradients becomes negligible when the algorithm

starts converging. The intuition is that the variance of gradients reflects the flatness of the loss

landscape and as the algorithm converges, the loss landscape becomes flatter.

3.7.2 Network Width

As observed by several recent studies [see e.g., 137, 206], wider networks can lead to a smaller

generalization gap. This may seem contradictory to the traditional wisdom as one may expect that a

class of wider networks has a higher VC-dimension and, hence, would have a higher generalize gap.

In our experiment, we use the SGLD algorithm to train neural networks with different widths. The
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Figure 3.2: Comparison between our generalization bound (Proposition 4) and the generalization gap. We use the SGLD
algorithm to train neural networks with varying widths on the MNIST (left), CIFAR-10 (middle), and SVHN (right)
datasets.

training process runs for 400 epochs until the training accuracy is 1.0. We compare our generalization

bound with the generalization gap in Figure 3.2. As shown, both the generalization gap and our

bound are decreasing with respect to the network width.

3.8 Conclusion

In this chapter, we investigated the generalization of models trained by noisy iterative algorithms.

We derived distribution-dependent generalization bounds in order to understand how the interaction

between data distributions and optimization methods influences the generalization of complex ML

models. We established a unified framework and leveraged fundamental tools from information

theory (e.g., strong data processing inequalities and properties of additive noise channels) for

proving these bounds. We demonstrated our generalization bounds through applications, including

DP-SGD, FL, and SGLD, in which our bounds own a simple form and can be estimated from data.

Numerical experiments suggest that our bounds can help explain some empirical observations of

neural networks.
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Chapter 4

Ensuring Fair Use of Group Attributes

Disparate treatment occurs when a machine learning model yields different decisions for individuals

based on a group attribute (e.g., age, sex). In domains where prediction accuracy is paramount, it

could be acceptable to fit a model which exhibits disparate treatment. In this case, it is crucial to

ensure fair use of group attributes—the designed model should tailor treatment to people’s unique

characteristics while preventing harm to any group of individuals.

The role of a group attribute in fair classification can be understood through several metrics

and principles. When a ML model is deployed in practice, fairness can be quantified in terms

of the performance disparity conditioned on a group attribute, such as statistical parity [98] and

equalized odds [119]. In domains where the goal is to predict accurately (e.g., medical diagnostics),

non-maleficence (i.e., “do no harm”) and beneficence (i.e., “do good”) [31] become more appropriate

moral principles for fairness [191, 267, 286, 305]. Accordingly, a ML model should avoid the causation

of harm and be as accurate as possible on each protected group.

The relationship between achieving the above-mentioned principles and allowing a classifier

to exhibit disparate treatment is complex. On the one hand, using a group-blind classifier (i.e., a

classifier that does not use the group attribute as an input feature) may cause harm unintentionally

since model performance relies on the distribution of the input data [86, 267, 286, 288, 289]. This

probability distribution can vary significantly conditioned on a group attribute due to, for example,

inherent differences between groups [86], differences in labeling [38], and differences in sampling

[255]. On the other hand, training a separate classifier for each protected group—a setting we

refer to as splitting classifiers—does not necessarily guarantee non-maleficence when sample size
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is limited [310]: groups with insufficient samples may incur a high generalization error and suffer

from overfitting. Motivated by this practical challenge, the first questions we study is: when is it

beneficial to split classifiers in terms of model performance? In this chapter, we provide precise

conditions under which splitting classifiers brings the most performance improvement compared

with group-blind classifiers.

The next question we study is: how to learn a model while ensuring fair use of group attributes.

We consider the setting where a given black-box classifier exhibits disparate impact1. We aim to

eliminate the performance gap by perturbing the distribution of input variables for the disadvantaged

group. We refer to the perturbed distribution as a counterfactual distribution and propose a descent

algorithm to learn a counterfactual distribution from data. The estimated distribution can be used

to build a data preprocessor that reduces disparate impact. Our approach can be applied to many

practical settings. Imagine that a rural clinic purchases a classification model to detect bone fractures

in X-rays and discovers that patients with a certain physical trait have high false positive rate; or a

bank enters a new market and discovers its credit score underperforms on customers over 60 years

of age. In all these cases, our tools can be used to repair the predictive models without training a

new one.

4.1 Overview and Main Contributions

First, we show that in the information-theoretic regime where the underlying distribution is known—

or, equivalently, an arbitrarily large number of samples are available—splitting never harms any group

in terms of average performance metrics. Thus, splitting will naturally follow the non-maleficence

principle in the large-sample regime. Second, we introduce a notion called the benefit-of-splitting

which measures the performance improvement by splitting classifiers compared to using a group-

blind classifier across all groups. The benefit-of-splitting is also an information-theoretic quantity as

it only relies on the underlying data distribution rather than number of samples or hypothesis class.

The definition of the benefit-of-splitting involves a model performance measure and, hence,

we divide our analyses into two parts based on different choices of this measure. In Section 4.5,

we quantify model performance in terms of standard loss functions (e.g., ℓ1 and cross entropy

loss). For the benefit-of-splitting under these loss functions, we provide sharp upper and lower

1A machine learning model has disparate impact when its performance changes across groups [24].
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Similar unlabeled distributions
(P0 ⇡ P1)

Di↵erent unlabeled distributions
(P0 6⇡ P1)

Similar
labeling functions

(y0 ⇡ y1)

Di↵erent
labeling functions

(y0 6⇡ y1)

Figure 4.1: The taxonomy of splitting based on two different factors. Samples from two groups are depicted in red and
blue, respectively, and their labels are represented by +, −. Each group’s labeling function is shown with the corresponding
color and the arrows indicate the regions where the points are labeled as +. Splitting classifiers benefits model performance
the most if the labeling functions are different and the unlabeled distributions are similar (yellow region).

bounds (Theorem 3) that capture when splitting classifiers benefits model performance the most.

These bounds indicate two factors (see Figure 4.1 for an illustration) which are central to the

benefit-of-splitting: (i) disagreement between labeling functions2, (ii) similarity between unlabeled

distributions2. Based on these two factors, our upper bounds in Theorem 3 indicate that splitting

does not produce much benefit if the labeling functions are similar or the unlabeled distributions

are different; our lower bounds in Theorem 3 indicate that splitting benefits the most if two groups’

labeling functions are different and unlabeled distributions are similar. Furthermore, our lower

bounds in Theorem 3 lead to an impossibility (i.e., converse) result for group-blind classifiers: under

certain precise conditions, using a group-blind classifier will always suffer from an inherent accuracy

trade-off between different groups and splitting classifiers can reconcile this issue. This converse

result is information-theoretic: a data scientist cannot overcome this limit by using more samples or

altering the hypothesis class.

In Section 4.6, we consider false error rate as a performance measure since in applications such as

medical diagnostics, high false error rate could result in unintentional harm [170]. Under this metric,

2 We borrow the terms “labeling function” and “unlabeled distribution” from the domain adaptation literature [33, 190].
The labeling function takes a data point as an input and produces a probability of its binary label being 1 and the unlabeled
distribution is a (marginal) probability distribution of the unlabeled data. Furthermore, the labeling function can be viewed as
a “channel” (i.e., conditional distribution) in the information theory parlance. The formal definitions are given in Section 4.3.
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computing the benefit-of-splitting directly from its definition may at first seem intractable since

it involves an optimization over an infinite-dimensional functional space. Nonetheless, we prove

that the benefit-of-splitting under false error rate has an equivalent, dual expression (Theorem 4)

which only requires solving two small-scale convex programs. Furthermore, the objective functions

of these convex programs have closed-form supergradients (Proposition 6). Combining these two

results leads to an efficient procedure (Algorithm 2) for computing the benefit-of-splitting. We

validate our procedure through numerical experiments on synthetic datasets in Section 4.9.1. When

the underlying data distribution is known, our procedure has a provable convergence guarantee

and returns the precise values of the benefit-of-splitting. When the underlying data distribution is

unknown, our procedure may suffer from approximation errors but still outperforms more naive

empirical approaches.

The aforementioned results capture the benefit-of-splitting from an information-theoretic perspec-

tive where the underlying data distributions are assumed to be known and the space of potential

classifiers is unrestricted. In Section 4.7, we consider the effect of splitting classifiers in a more

practical setting where group-blind and split classifiers are restricted over the same hypothesis class

(e.g., logistic regressions) and the underlying distribution is accessed only through finitely many

i.i.d. samples. In this case, splitting classifiers is not necessarily beneficial since the group with less

samples may suffer from overfitting. To quantify the effect of splitting classifiers, we analyze the

sample-limited benefit-of-splitting. We derive upper and lower bounds for the benefit-of-splitting in

this regime in Theorem 6. These bounds disentangle three factors which determine the effect of

splitting classifiers in practice: (i) disagreement between optimal (split) classifiers and training error

associated with these optimal classifiers; (ii) similarity between (empirical) unlabeled distributions;

and (iii) model complexity and number of samples. The first two factors are analogous to the ones

that affect the benefit-of-splitting in the information-theoretic regime: when the hypothesis class is

complex enough and the sample size tends to infinity, the optimal classifiers approximate the labeling

functions and the empirical unlabeled distributions converge to the true unlabeled distributions.

We illustrate how these factors determine the performance impact of splitting classifiers through

experiments on 40 datasets downloaded from OpenML [272].

Finally, we consider how to use the group attribute while ensuring fair use. In particular, we

consider the setting where a (black-box) classifier exhibits a performance disparity across groups

of individuals. We aim to eliminate the performance gap by perturbing the distribution of input
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variables for the disadvantaged group. We refer to the perturbed distribution as a counterfactual

distribution, and characterize its properties for common (group) fairness criteria. Our tools recover a

counterfactual distribution using a descent procedure in the simplex of probability distributions. We

prove that influence functions can be used to compute a gradient in this setting, and derive closed-

form estimators that enable efficient computation of influence functions for several fairness criteria.

We design pre-processing methods that use counterfactual distributions to repair the black-box

classifier without the need to train a new model. We validate our procedure by repairing classifiers

trained with real-world datasets. Our results demonstrate how counterfactual distributions can help

mitigate disparate impact in real-world applications.

The proof techniques of this chapter are based on fundamental tools found in statistics, such

as Brown-Low’s two-points lower bound [45], and methods in convex analysis, such as Ky Fan’s

min-max theorem [94]. These tools are widely used in applications such as non-parametric estimation

[265], and are useful for analyzing the min-max risk in statistical settings [80, 139, 220, 298, 299].

Furthermore, the factors that we provide for understanding the effect of splitting classifiers are

inspired by the necessary and sufficient conditions of domain adaptation learnability in Ben-David et

al. [72].

4.2 Related Works

ML models have been increasingly used in applications of individual-level consequences, ranging

from recidivism prediction [10] and lending [130] to healthcare [169]. A number of works in fair ML

aim at understanding why discrimination happens [2, 60, 65, 68, 71, 83, 135, 136, 149, 161]; how it

can be quantified [36, 61, 217]; and how it can be reduced [3, 5, 56, 57, 111, 121, 151, 153, 158, 194].

There are also an increasing number of studies that take causality into account for understanding

and mitigating discrimination [64, 156, 167, 197]. We build on a line of recent results on decoupling

predictive models for improving accuracy-fairness trade-offs [see e.g., 86, 160, 183, 267, 305]. For

example, Ustun et al. [267] introduce a tree structure to recursively choose group attributes for

decoupling. Lipton et al. [183] show that using group-blind classifiers could be suboptimal in terms

of trading off accuracy and fairness. The work closest to ours is Dwork et al. [86] which present a

decoupling technique to learn separate models for different groups. A detailed comparison with [86]

is given in Section 4.7.2.
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A standard assumption in ML is that the training and testing data are drawn from the same

underlying probability distribution. Domain adaptation [33, 107, 190] and transfer learning [163, 168]

consider a more general setting where models are trained on a source domain and deployed on a

(different) target domain. A common assumption therein is known as covariate shift, which requires

the source and target domain share the same labeling function. In this chapter, we prove (see

Theorem 3) that if the covariate shift assumption is violated and two groups’ unlabeled distributions

are similar, then no classifier can perform well on both groups. In this regard, our work is connected

to Ben-David et al. [72] which present impossibility results on domain adaptation learnability.

Compared to [72], Theorem 3 characterizes an information-theoretic fundamental limit which cannot

be circumvented by using a large number of samples or a carefully designed hypothesis class.

Furthermore, the lower bound in Theorem 3 serves as a complementary statement to the upper

bounds in domain adaptation [cf. 33, 190]. These bounds jointly describe the range of the loss a data

scientist may incur by training a model on the source domain and deploying on the target domain.

We develop a theoretical framework that is used to design methods to determine counterfactual

distributions in practice. We then use counterfactual distributions to design optimal transport-based

pre-processing methods for ensuring fairness. In this regard, the closest work to ours are those

of Del Barrio et al. [74], Feldman et al. [98], Johndrow and Lum [142], which propose methods to

control specific disparate impact metrics via optimal transport. These methods differ from ours in

that they (i) focus on reducing measures of disparity related to predicted outcomes; (ii) map the

input variable distributions across all groups to a common distribution. More broadly, our approach

differs from other model-agnostic approaches to mitigate disparate impact [e.g., pre-processing

methods such as 56, 151] in that it does not require access to the training data, and does not require

training a new model.

The term “counterfactual distribution” is often used to describe different kinds of hypothetical

effects. In the statistics and economics literature [see e.g., 22, 63, 77, 100, 102, 141, 215, 234], a

counterfactual distribution refers to a hypothetical distribution of an outcome variable given a specific

distribution of input variables (e.g., the distribution of wages (outcome variable) for young workers

if young workers had the same qualifications as older workers). The counterfactual distribution in

this chapter describes a different kind of effect — i.e., a distribution of input variables to minimize

disparate impact — and, consequently, must be derived using a different set of tools.
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4.3 Preliminaries

Notation Consider a binary classification task (e.g., detecting pneumonia from X-rays) where

the goal is to learn a probabilistic classifier h : X → [0, 1] that predicts a label (e.g., presence of

pneumonia) Y ∈ {0, 1} using input features (e.g., chest X-rays) X ∈ X . We assume there is an

additional binary3 group attribute (e.g., sex) S ∈ {0, 1} that does not belong to the input features

X. We denote the unlabeled probability distributions of input features conditioned on the group

attribute by

P0 ≜ PX|S=0, P1 ≜ PX|S=1.

The labeling functions of the two groups are denoted by

y0(x) ≜ PY|X,S(1|x, 0), y1(x) ≜ PY|X,S(1|x, 1).

In order to measure the difference between two unlabeled distributions (i.e., P0 and P1), we recall

Csiszár’s f -divergence [70]. Let f : (0, ∞)→ R be a convex function with f (1) = 0 and P, Q be two

probability distributions over X . The f -divergence between P and Q is defined by

D f (P∥Q) ≜
∫
X

f
(

dP
dQ

)
dQ. (4.1)

Some examples of f -divergence are included in Appendix B.1.

4.4 The Benefit-of-Splitting

We study the impact of disparate treatment by comparing the performance between optimal group-

blind and split classifiers. Recall that a ML model exhibits disparate treatment if it explicitly uses a

group attribute to produce an output. We illustrate the difference between group-blind and split

classifiers through the example of logistic regressions:

• a group-blind classifier does not use a group attribute as an input: h(x) = logistic(wTx) where

logistic(t) ≜ 1/(1 + exp(−t)) for t ∈ R;

• split classifiers are a set of classifiers trained and deployed separately on each group: hs(x) =

3For the sake of illustration, we assume that the group attribute S is binary but our results can be extended to a setting
of multi-groups. Furthermore, split classifiers can be applied to a scenario where multiple subgroups overlap [153] since
individuals belonging to both groups can opt for either one of the split classifiers.
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logistic(wT
s x) for s ∈ {0, 1}.

We measure the performance of both group-blind and split classifiers in terms of the disadvantaged

group (i.e., the group with worst performance). For a given performance measure Ls(·) (higher

values indicate a worse performance), the performance of a group-blind classifier h and a set of split

classifiers {hs}s∈{0,1}, respectively, is measured by

max
s∈{0,1}

Ls(h) and max
s∈{0,1}

Ls(hs).

Consequently, the optimal group-blind and split classifiers (across all measurable functions from X
to [0, 1]) achieve the performance

inf
h:X→[0,1]

max
s∈{0,1}

Ls(h) and max
s∈{0,1}

inf
h:X→[0,1]

Ls(h).

Next, we introduce the benefit-of-splitting to quantify the effect of splitting classifiers compared to

using a group-blind classifier.

Definition 5. For each s ∈ {0, 1}, let PX,Y|S=s be a fixed probability distribution and Ls(·) be a

performance measure, we define the benefit-of-splitting as

ϵsplit ≜ inf
h:X→[0,1]

max
s∈{0,1}

Ls(h)− max
s∈{0,1}

inf
h:X→[0,1]

Ls(h), (4.2)

where the infimum is taken over all (measurable) functions.

The benefit-of-splitting is the difference between the performance of the optimal group-blind and

split classifiers. In other words, if h∗ and {h∗s }s∈{0,1} are optimal group-blind and split classifiers

respectively, i.e.,

h∗ ∈ argmin
h:X→[0,1]

max
s∈{0,1}

Ls(h), h∗s ∈ argmin
h:X→[0,1]

Ls(h) s ∈ {0, 1},

the benefit-of-splitting can be equivalently expressed as

ϵsplit = max
s∈{0,1}

Ls(h∗)− max
s∈{0,1}

Ls(h∗s ). (4.3)

In practice, a data scientist may restrict the type of classifiers by fixing a hypothesis class (e.g., logistic

regressions). The benefit-of-splitting can be adapted for capturing the effect of splitting classifiers in

this case (see Definition 9).

By the optimality of h∗s and the max-min inequality, we have Ls(h∗) ≥ Ls(h∗s ) for s ∈ {0, 1} and
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ϵsplit ≥ 0 which implies that, information-theoretically, using a separate classifier on each group will

never diminish model performance compared to using a group-blind classifier. A natural question

is: how much performance improvement does splitting classifiers bring? Before answering this

question, we specify performance measures of interest and present the benefit-of-splitting under

these performance measures.

4.4.1 Loss Reduction by Splitting

The first type of performance measures contains standard loss functions which have been widely

used in fair ML [see e.g., 86] and domain adaptation [see e.g., 33]. These loss functions quantify

the disagreement between the labeling function ys and the probabilistic classifier h. We recast the

benefit-of-splitting under these loss functions below.

Definition 6. The ℓ1-benefit-of-splitting ϵsplit,1 is the benefit-of-splitting in Definition 5 with the

performance measure:

Ls(h) = E [|h(X)− ys(X)| | S = s] .

The ℓ2-benefit-of-splitting ϵsplit,2 is the benefit-of-splitting in Definition 5 with the performance

measure:

Ls(h) = E
[
(h(X)− ys(X))2 | S = s

]
.

The KL-benefit-of-splitting ϵsplit,KL is the benefit-of-splitting in Definition 5 with the performance

measure:

Ls(h) = E [DKL(ys(X)∥h(X)) | S = s] ,

where for p, q ∈ [0, 1], DKL(p∥q) ≜ p log(p/q) + (1− p) log((1− p)/(1− q)).

4.4.2 False Error Rate Reduction by Splitting

Now we use the false error rate (FER) as a performance measure. The false error rate of a classifier is

the maximum4 between (generalized) false positive rate and (generalized) false negative rate [217]. In

healthcare, assuring low false error rate is as important as guaranteeing high accuracy since patients

4Our analysis can be extended to any convex combination of false positive rate and false negative rate.
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could suffer from harm due to a classifier’s false error rate [170]. For example, the false negative

diagnosis may delay treatment in patients who are critically ill; the false positive diagnosis could

lead to an unnecessary treatment. Furthermore, a classifier with high accuracy does not necessarily

mean it has low false error rate. Hence, we consider how split classifiers reduce the false error rate

by recasting the benefit-of-splitting under this performance measure.

Definition 7. The FER-benefit-of-splitting ϵsplit,FER is the benefit-of-splitting in Definition 5 with the

performance measure:

Ls(h) = max {E [h(X) | Y = 0, S = s] , E [1− h(X) | Y = 1, S = s]} . (4.4)

Connection with equalized odds. Equalized odds, discussed by Hardt et al. [119], is a commonly

used group fairness measure that requires different groups to have (approximately) the same false

positive and false negative rates. Specifically, a probabilistic classifier h : X → [0, 1] satisfies equalized

odds [119, 217] if

E [h(X) | Y = 0, S = 0] = E [h(X) | Y = 0, S = 1] (equal false positive rate),

E [1− h(X) | Y = 1, S = 0] = E [1− h(X) | Y = 1, S = 1] (equal false negative rate).

Under this definition, classifiers are considered “unfair” if their false positive rate or false negative

rate vary across different groups. However, imposing equalized odds constraints may lead to a

significant performance reduction in classification [65, 67, 103, 309]. In contrast, the benefit-of-

splitting definition studied in this chapter aims to capture the principles of non-maleficence and

beneficence [31]: classifiers should avoid the causation of harm and achieve the best performance

on each group. By taking the optimal group-blind classifier as a baseline approach, this may allow

split classifiers to potentially exhibit performance disparities between groups—as long as the split

classifiers do not perform worse than the baseline approach and are as accurate as possible.

4.5 The Taxonomy of Splitting

In this section, we analyze the loss reduction by splitting classifiers compared to using a group-blind

classifier. We achieve this goal by upper and lower bounding the benefit-of-splitting under different

loss functions (see Definition 6). These bounds reveal factors which could impact the effect of
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splitting classifiers and lead to a taxonomy of splitting, i.e., a characterization of when splitting

benefits model performance the most or splitting does not bring much benefit.

Before stating the main result (i.e., bounds for the benefit-of-splitting), we prove a lemma first

which converts the definition of the benefit-of-splitting into a single variable optimization problem.

This lemma will be used in the proof of our lower bounds.

Lemma 10. The benefit-of-splitting under different loss functions in Definition 6 have equivalent expressions

ϵsplit,1 = sup
ω∈[0,1]

(1−ω)
∫
Aω

|y1(x)− y0(x)|dP1(x) + ω
∫
Ac

ω

|y1(x)− y0(x)|dP0(x),

ϵsplit,2 = sup
ω∈[0,1]

ω(1−ω)
∫

(y1(x)− y0(x))2dP0(x)dP1(x)
ωdP0(x) + (1−ω)dP1(x)

,

ϵsplit,KL = sup
ω∈[0,1]

JSω(PX,Y|S=0∥PX,Y|S=1)− JSω(P0∥P1),

where Aω ≜
{

x ∈ X | dP0(x)
dP1(x) ≥ 1−ω

ω

}
and JSω(·∥·) is the Jensen-Shannon divergence.

Proof. See Appendix B.2.1.

Next, we provide upper and lower bounds for ϵsplit,1, ϵsplit,2, and ϵsplit,KL, respectively. These

bounds rely on two main factors: (i) disagreement between different groups’ labeling functions and

(ii) similarity between their unlabeled distributions. In particular, the second factor is captured by a

certain f -divergence [70, 242] (see Appendix B.1 for some examples of f -divergence).

Theorem 3. The ℓ1-benefit-of-splitting can be upper and lower bounded

ϵsplit,1 ≤ min
{

min
s∈{0,1}

√
E [(y1(X)− y0(X))2 | S = s] ·

√
1−DTV(P0∥P1),

1
2

max
s∈{0,1}

E [|y1(X)− y0(X)| | S = s]
}

,

ϵsplit,1 ≥
1
2

max
s∈{0,1}

{
E [|y1(X)− y0(X)| | S = s]−

√
E [(y1(X)− y0(X))2 | S = s] · d2(P1−s∥Ps)

}
,

where DTV(P0∥P1) is the total variation distance and d2(P1−s∥Ps) is Marton’s divergence. Suppose that

E [|y1(X)− y0(X)| | S = 1] ≥ E [|y1(X)− y0(X)| | S = 0] .
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Then the ℓ2-benefit-of-splitting can be upper and lower bounded

ϵsplit,2 ≤ min
{

min
s∈{0,1}

√
E [(y1(X)− y0(X))4 | S = s] ·

√
1−DTV(P0∥P1),

1
4

max
s∈{0,1}

E
[
(y1(X)− y0(X))2 | S = s

]}
,

ϵsplit,2 ≥
E [|y1(X)− y0(X)| | S = 0]√

Dχ2(P1∥P0) + 1 + 1

2

,

where Dχ2(P1∥P0) is the chi-square divergence. The KL-benefit-of-splitting can be upper and lower bounded

ϵsplit,KL ≤ min
{

2JS(PX,Y|S=0∥PX,Y|S=1)− 2JS(P0∥P1), max
s∈{0,1}

E
[
DKL

(
ys(X)∥ y0(X)+y1(X)

2

)
| S = s

]}
,

ϵsplit,KL ≥ JS(PX,Y|S=0∥PX,Y|S=1)− JS(P0∥P1),

where JS(·∥·) is the Jensen–Shannon divergence.

Proof. See Appendix B.2.2.

Now we consider extreme scenarios to verify the sharpness of the bounds and to understand

when splitting classifiers benefits model performance the most (see Figure 4.1 for an illustration).

• Consider the setting where two groups share the same labeling function (i.e., y0 = y1). All

the upper and lower bounds in Theorem 3 for the benefit-of-splitting under different loss

functions become zero and, hence, the bounds are sharp. This is quite intuitive as one can use

the labeling function y0 as a group-blind classifier and it achieves perfect performance on both

groups. Hence, there is no benefit of splitting classifiers.

• Consider the setting where two groups share the same unlabeled distribution (i.e., P0 = P1).

The upper and lower bounds of ϵsplit,1 are both E [|y1(X)− y0(X)|] /2, which is equal to ϵsplit,1.

The bounds of ϵsplit,2 become

1
4

E [|y1(X)− y0(X)|]2 ≤ ϵsplit,2 ≤
1
4

E
[
(y1(X)− y0(X))2

]
.

If, in addition, |y0(x)− y1(x)| is the same across all x, the upper and lower bounds become the

same and, hence, are sharp. Finally, the bounds of ϵsplit,KL become

E [JS(y0(X)∥y1(X))] ≤ ϵsplit,KL ≤ max
s∈{0,1}

E
[
DKL

(
ys(X)∥ y0(X)+y1(X)

2

)]
.
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If, in addition, E [DKL (y0(X)∥(y0(X) + y1(X))/2)] = E [DKL (y1(X)∥(y0(X) + y1(X))/2)], then

the upper and lower bounds are equal. This extreme case indicates that when different groups

have the same unlabeled distribution (i.e., P0 = P1), the benefit-of-splitting is determined by the

disagreement between their labeling functions (i.e., large disagreement leads to high benefit).

• Consider the setting where two groups have unlabeled distributions lying on disjoint support

sets. In this case, DTV(P0∥P1) = 1 and JS(P0∥P1) = log 2. Hence, the upper bounds of ϵsplit,1

and ϵsplit,2 become zero. Furthermore,

0 ≤ JS(PX,Y|S=0∥PX,Y|S=1)− JS(P0∥P1) = JS(PX,Y|S=0∥PX,Y|S=1)− log 2 ≤ 0.

where the last step is because the Jensen–Shannon divergence is always upper bounded by log 2.

Therefore, the upper bound of ϵsplit,KL is zero as well. In other words, there is no benefit of

splitting classifiers when the unlabeled distributions are mutually singular. One can interpret

this fact by considering a special group-blind classifier which mimics the labeling function of

each group in the region where its unlabeled distribution lies. This classifier achieves perfect

performance for each group. Note that such a group-blind classifier exists since we do not

restrict the space of potential classifiers and, hence, any (measurable) function could become a

classifier.

To summarize, from an information-theoretic perspective, splitting classifiers benefits the most if

two groups have similar unlabeled distributions and different labeling functions. This taxonomy of

splitting appears for all the commonly used loss functions (i.e., ℓ1, ℓ2, and KL loss).

Recall that the benefit-of-splitting (see Definition 5) measures the performance improvement by

using the optimal split classifiers compared to deploying the optimal group-blind classifier across all

groups. Here model performance is quantified in terms of the disadvantaged group (i.e., the group

with the worst performance). We end this section by considering the Bayes risk as an alternative way

of measuring model performance5. Specifically, the performance of a group-blind classifier h and a

set of split classifiers {hs}s∈{0,1}, respectively, is measured by

group-blind : Pr(S = 0) ·E [|h(X)− y0(X)| | S = 0] + Pr(S = 1) ·E [|h(X)− y1(X)| | S = 1] ,

split : Pr(S = 0) ·E [|h0(X)− y0(X)| | S = 0] + Pr(S = 1) ·E [|h1(X)− y1(X)| | S = 1] .

5For the sake of illustration, in what follows we only consider the ℓ1 loss.
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They can be equivalently written as

E [|h(X)− yS(X)|] and E [|hS(X)− yS(X)|] .

The performance difference between the optimal group-blind and split classifiers leads to the

following definition.

Definition 8. We define the population-benefit-of-splitting as

ϵsplit,pop ≜ inf
h:X→[0,1]

E [|h(X)− yS(X)|]− inf
hs :X→[0,1]
for s∈{0,1}

E [|hS(X)− yS(X)|] .

The population-benefit-of-splitting is upper bounded by the benefit-of-splitting (i.e., ϵsplit,pop ≤
ϵsplit,1) since the Bayes risk is upper bounded by the worst-case risk and the split classifiers {ys}s∈{0,1}

composed by the labeling functions can achieve zero risk. Hence, the upper bound of ϵsplit,1 in

Theorem 3 naturally translates into an upper bound of ϵsplit,pop. Next, we provide alternative bounds

for ϵsplit,pop which reveal an additional factor influencing ϵsplit,pop.

Proposition 5. Assume Pr(S = 0) ≤ 0.5. The population-benefit-of-splitting can be upper and lower bounded

ϵsplit,pop ≤ Pr(S = 0) ·E [|y1(X)− y0(X)| | S = 0] ,

ϵsplit,pop ≥ Pr(S = 0)
(

E [|y1(X)− y0(X)| | S = 0]− E Pr(S=1)
Pr(S=0)

(P0∥P1)

)
,

where E Pr(S=1)
Pr(S=0)

(P0∥P1) is the Eγ-divergence with γ = Pr(S = 1)/ Pr(S = 0).

Proof. See Appendix B.2.3.

Remark 4. The Eγ-divergence plays an important role in Bayesian statistical hypothesis testing

[184, 242]. Since γ → Eγ(P∥Q) is non-increasing and E1(P∥Q) = DTV(P∥Q) [184], we can further

lower bound ϵsplit,pop by using the total variation distance

ϵsplit,pop ≥ Pr(S = 0) (E [|y1(X)− y0(X)| | S = 0]−DTV(P0∥P1)) .

The Eγ-divergence relates with the DeGroot statistical information [73] through (see Equation (421)

in [242])

Ip(P∥Q) =


pE 1−p

p
(P∥Q) p ∈ (0, 1

2 ]

(1− p)E p
1−p

(Q∥P) p ∈ [ 1
2 , 1).
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Hence, we can write our lower bound of ϵsplit,pop equivalently as

ϵsplit,pop ≥ Pr(S = 0) ·E [|y1(X)− y0(X)| | S = 0]− IPr(S=0)(P0∥P1).

As shown in Proposition 5, the population-benefit-of-splitting is affected not only by the above-

mentioned two factors (i.e., disagreement between labeling functions and similarity between unla-

beled distributions) but also by the percentage of the minority group over the whole population. This

reveals a caveat of the population-benefit-of-splitting: the minority group can be underrepresented

when one designs a group-blind classifier by minimizing the loss over the whole population. In

contrast, the benefit-of-splitting (see Definition 6) does not rely on the probability of the group

attribute and, hence, represents each group equally.

4.6 An Efficient Procedure for Computing the Effect of Splitting

In the last section, we provide upper and lower bounds for the benefit-of-splitting under different

kinds of loss functions. Here, we consider a different performance measure: false error rate. It turns

out that the benefit-of-splitting under false error rate, denoted by ϵsplit,FER (see Definition 7), has an

equivalent expression which leads to an efficient procedure of computing ϵsplit,FER.

Even with the knowledge of the underlying data distribution, computing the benefit-of-splitting

directly from its definition is challenging. This is because the space of potential classifiers is

unrestricted (i.e., any measurable function could be used as group-blind or split classifiers) and

solving optimization problems over this infinite-dimensional functional space could be intractable.

One may attempt to circumvent this issue by restricting the classifiers over a hypothesis class.

However, this naive approach has two limitations. First, it is unclear how to choose a hypothesis

class in order to compute the benefit-of-splitting reliably. We will show in Example 1 that different

hypothesis classes could result in completely different values of the benefit-of-splitting. Second,

as evidenced in [306], training the optimal group-blind or split classifiers may suffer from a non-

convexity issue.

We leverage the special form of the false error rate in (4.4) and prove an equivalent expression

of ϵsplit,FER below which can be computed by solving two small-scale convex programs. The

objective functions of these convex programs have closed-form supergradients. Hence, they can

be solved efficiently via standard solvers, such as (stochastic) mirror descent [32, 202]. When the
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data distribution is known, our procedure returns the precise values of ϵsplit,FER without the need of

training optimal group-blind and split classifiers. The equivalent expression of ϵsplit,FER is given in

the following theorem.

Theorem 4. Assume Pr(Y = i, S = s) > 0 for any i, s ∈ {0, 1}. The FER-benefit-of-splitting ϵsplit,FER can

be equivalently written as

max
µµµ∈∆4

 ∑
s∈{0,1}

µs,1 + E

 ∑
s,i∈{0,1}

µs,iϕs,i(X)


−

− max
ννν(s)∈∆2

for s∈{0,1}

ν
(s)
1 + E

 ∑
i∈{0,1}

ν
(s)
i ϕs,i(X)


−

 .

Here for a positive integer d, ∆d ≜ {z ∈ Rd | ∑d
i=1 zi = 1, zi ≥ 0}, for any a ∈ R, (a)− ≜ min{a, 0},

µµµ ≜ (µ0,0, µ0,1, µ1,0, µ1,1), ννν(s) ≜ (ν
(s)
0 , ν

(s)
1 ), and

ϕs,i(x) ≜
(1− i− ys(x))Pr(S = s | X = x)

Pr(Y = i, S = s)
, s, i ∈ {0, 1}. (4.5)

Proof. See Appendix B.3.1.

Remark 5. We demonstrate a proof sketch of Theorem 4. The FER-benefit-of-splitting ϵsplit,FER

is composed by infh:X→[0,1] maxs∈{0,1} Ls(h) and maxs∈{0,1} infh:X→[0,1] Ls(h). The first term can be

equivalent written as

inf
h:X→[0,1]

max
µµµ∈∆4

 ∑
s∈{0,1}

µs,0E [h(X) | Y = 0, S = s] + µs,1E [1− h(X) | Y = 1, S = s]

 . (4.6)

The key step in our proof is to swap maximum and infimum in (4.6) by using Ky Fan’s min-

max theorem [94] (see Lemma 26). Then for a fixed µµµ, the optimal classifier owns a closed-form

expression. After some algebraic manipulations, (4.6) becomes the first convex program in the

equivalent expression of ϵsplit,FER. In the same vein, the another term maxs∈{0,1} infh:X→[0,1] Ls(h)

becomes the second convex program.

Next, we show that the objective functions of the convex programs in Theorem 4 have closed-form

supergradients.

Proposition 6. Under the same notations and assumptions in Theorem 4, functions g : ∆4 → R and

gs : ∆2 → R with s ∈ {0, 1} defined as

g(µµµ) ≜ ∑
s∈{0,1}

µs,1 + E

 ∑
s,i∈{0,1}

µs,iϕs,i(X)


−

 gs(ννν) ≜ ν1 + E

 ∑
i∈{0,1}

νiϕs,i(X)


−


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have a closed-form supergradient, respectively:

∂g(µµµ) ∋
i + E

ψs,i(X) · I
[

∑
s′ ,i′∈{0,1}

µs′ ,i′ϕs′ ,i′(X) < 0
] ∣∣∣∣∣ S = s


s,i∈{0,1}

, (4.7)

∂gs(ννν) ∋
i + E

ψs,i(X) · I
[

∑
i′∈{0,1}

νi′ϕs,i′(X) < 0
] ∣∣∣∣∣ S = s


i∈{0,1}

, (4.8)

where I[·] is the indicator function and

ψs,i(x) ≜
1− i− ys(x)

Pr(Y = i | S = s)
, s, i ∈ {0, 1}. (4.9)

Proof. See Appendix B.3.2.

When the underlying data distribution is known, one can compute ϵsplit,FER by solving the convex

programs in Theorem 4 via standard tools, such as mirror descent, with convergence guarantees [32].

This is non-trivial because, as stated before, computing ϵsplit,FER directly from its definition could be

intractable.

In practice, when the underlying data distribution is unknown, one can first approximate the

conditional distribution Pr(S = 1 | X = x) and the labeling functions y0(x), y1(x) by training three

well-calibrated binary classifiers. These classifiers will be called when computing the supergradient

of the objective functions (see Proposition 6). We summarize our procedure of computing ϵsplit,FER in

Algorithm 2 where stochastic mirror descent is used for solving the convex programs in Theorem 4.

The numerical results are deferred to Section 4.9.1.

Algorithm 2 Computing ϵsplit,FER using stochastic mirror descent.

Input:
dataset: D = {(xi, yi, si)}n

i=1, maximum number of iterations: T, step size: {ηt}T
t=1

Initialize
I0 ← {i = 1, · · · , n | si = 0} ▷ indices of points in D with si = 0
D0 ← (xi, yi) for i ∈ I0 ▷ points with si = 0
D1 ← (xi, yi) for i ̸∈ I0 ▷ points with si = 1
approximate Pr(S = 1 | X = x) ▷ train a classifier using {(xi, si)}n

i=1
approximate y0(x) and y1(x) ▷ train two classifiers using D0 and D1, respectively
µµµ← (0.25, 0.25, 0.25, 0.25) and ννν(s) ← (0.5, 0.5) ▷ initialize values

for t = 1,2, · · · ,T do
draw unlabeled sample x0,t, x1,t ▷ randomly draw sample from D0, D1

pick w ∈ ∂g(µµµ) and w(s) ∈ ∂gs(ννν(s)) ▷ approximate supergradient using x0,t, x1,t
µj ← µj exp(ηtwj)/ ∑j′ µj′ exp(ηtwj′ ) ▷ update variable via entropic descent

ν
(s)
j ← ν

(s)
j exp(ηtw

(s)
j )/ ∑j′ ν

(s)
j′ exp(ηtw

(s)
j′ ) ▷ update variable via entropic descent

end for
return: g(µµµ)−maxs∈{0,1} gs(ννν(s)) ▷ the FER-benefit-of-splitting: ϵsplit,FER
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Our procedure can be understood through the following two steps:

• training a classifier to identify the group attribute using input features and a classifier for each

group to predict label using input features;

• solving (convex) programs with these classifiers in hand.

We remark that this two-step approach has also appeared in [e.g., 194, 288] for designing “fair”

classifiers.

4.7 Splitting in Practice

So far we have studied the benefit-of-splitting from an information-theoretic view as we assume the

underlying data distribution is known and do not restrict the space of potential classifiers. In this

section, we study the effect of splitting classifiers from a more practical perspective. First, we restrict

the classifiers over a hypothesis class (e.g., logistic regressions) and analyze the hypothesis class

dependent splitting. Second, we consider splitting classifiers in a finite sample regime and study the

sample limited splitting.

4.7.1 Hypothesis Class Dependent Splitting

We restrict both group-blind and split classifiers over the same hypothesis class and introduce

a hypothesis class dependent benefit-of-splitting for quantifying the loss reduction by splitting

classifiers.

Definition 9. For a fixed probability distribution PX,Y|S=s with s ∈ {0, 1} and a given hypothesis

class H, the H-benefit-of-splitting is defined as

ϵHsplit ≜ inf
h∈H

max
s∈{0,1}

E [|h(X)− ys(X)| | S = s]− max
s∈{0,1}

inf
h∈H

E [|h(X)− ys(X)| | S = s] . (4.10)

Clearly, the H-benefit-of-splitting maintains the non-maleficence principle ϵHsplit ≥ 0, i.e., given

sufficient samples, splitting classifiers will never diminish model accuracy compared to using a

group-blind classifier. Next, we provide upper and lower bounds for ϵHsplit in order to understand

when splitting classifiers brings the most benefit. As before, these bounds rely on three major factors:

(i) disagreement between optimal (split) classifiers; (ii) similarity between unlabeled distributions;

and (iii) approximation error defined as the smallest loss achieved by split classifiers. In particular,
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we assume that the last factor is small. This is a common assumption in, e.g., the domain adaptation

literature [33] since when the hypothesis class is complex enough, this term will be negligible.

Furthermore, one central notion of fairness we follow is non-maleficence (i.e., classifiers should avoid

the causation of harm on any group). When the approximation error is large, neither group-blind

classifiers nor splitting classifiers are accurate and “harm” is inevitable. Hence, one should change

the hypothesis class first instead of splitting.

Theorem 5. Let h∗s be an optimal classifier for group s ∈ {0, 1}:

h∗s ∈ argmin
h∈H

E [|h(X)− ys(X)| | S = s] .

Then we have the following upper and lower bounds for the H-benefit-of-splitting

ϵHsplit ≤ min
s∈{0,1}

E [|h∗1(X)− h∗0(X)| | S = s]

ϵHsplit ≥
1
2

max
s∈{0,1}

E [|h∗1(X)− h∗0(X)| | S = s]−DTV(P0∥P1)−
3 ∑s∈{0,1} E [|h∗s (X)− ys(X)| | S = s]

2
.

Proof. See Appendix B.4.1.

Analogous to our discussions in Section 4.5, the bounds in Theorem 5 delineate a taxonomy of

splitting when both group-blind and split classifiers are restricted over the same hypothesis class:

splitting classifiers does not bring much benefit when two groups have similar optimal classifiers;

splitting classifiers benefits the most when two groups have similar unlabeled distributions and

different optimal classifiers. We further demonstrate this taxonomy of splitting and show how these

factors influence the effect of splitting through numerical experiments in Section 4.9.2.

In contrast to the upper bound for ϵsplit (see Theorem 3), the upper bound for ϵHsplit does not

involve the similarity between the unlabeled distributions. Consequently, when the optimal classifiers

are different and the unlabeled distributions are different as well, it is unclear how much benefit

splitting classifiers brings. We provide the following example which shows that different hypothesis

classes may result in largely different values of the H-benefit-of-splitting. Hence, one must study the

effect of splitting on a case-by-case basis for different hypothesis classes.

Example 1. Let two groups’ unlabeled distributions and labeling functions be P0 ∼ N (−µ, 1),

y0(x) = I[x>−µ] and P1 ∼ N (µ, 1), y1(x) = I[x<µ], respectively. As µ grows larger, the distance

between the unlabeled distributions P0 and P1 increases (i.e., DTV(P0∥P1)→ 1 as µ→ ∞). Now we

consider the following two hypothesis classes:

57



• Hthreshold is the class of threshold functions over R: I[x>a] or I[x<b].

• Hinterval is the class of intervals over R: I[x∈(a,b)].

Here, a, b are allowed to be −∞ and +∞, respectively. In both cases, the labeling functions are

included in the hypothesis classes and, hence, are optimal classifiers. The disagreement between

these optimal classifiers is at least 1/2:

E [|y1(X)− y0(X)| | S = s] ≥ 1/2, s ∈ {0, 1}.

The benefit-of-splitting under Hthreshold is 1/2 as any group-blind classifier incurs at least 1/2 loss

on the disadvantaged group. On the other hand, as µ becomes larger, the benefit-of-splitting under

Hinterval is nearly 0 since a group-blind classifier with the form h∗(x) = I[x∈(−µ,µ)] can achieve almost

perfect accuracy.

The previous example shows that using a threshold function as a group-blind classifier will

always incur an inevitable accuracy trade-off between two groups. On the other hand, if we enrich

the hypothesis class to include interval functions, this trade-off can be reconciled. Motivated by this

observation, when two groups have different unlabeled distributions and different labeling functions,

we conjecture that the H-benefit-of-splitting is determined by the “richness” of the hypothesis class:

a more complex hypothesis class can produce a group-blind classifier which mimics the labeling

function of each group in the region they lie in, and, hence, this classifier guarantees high accuracy

for both groups. We formalize this intuition through the example of feedforward neural networks.

Recall that a sigmoidal function [25] (e.g., logistic function) S : R → R is a bounded measurable

function which satisfies S(z) → 1 as z → +∞ and S(z) → 0 as z → −∞. The hypothesis class

associated to feedforward neural networks with one layer of sigmoidal functions has the form

H =

{
k

∑
i=1

ciS(ai · x + bi) + c0 | ai ∈ Rd, bi, ci ∈ R

}
. (4.11)

In this case, Barron’s approximation bounds [25] guarantee that these neural networks can approxi-

mate a large class of functions reliably.

Proposition 7. Consider the hypothesis class H in (4.11). If X ⊂ Rd is compact, we have

ϵHsplit ≤ min
s∈{0,1}

√
E [(y1(X)− y0(X))2 | S = s] ·

√
1−DTV(P0∥P1) +

2diam(X )C√
k

,
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where diam(X ) = supx,x′∈X ∥x− x′∥2,

h∗(x) ≜
y0(x)dP0(x) + y1(x)dP1(x)

dP0(x) + dP1(x)
=
∫

Rd
exp(iwx)h̃∗(w)dw (4.12)

for some complex-valued function h̃∗, and C ≜
∫

Rd ∥w∥2|h̃∗(w)|dw.

Proof. See Appendix B.4.2.

Remark 6. The condition in (4.12) goes back to the seminal work of Barron [25]. By the Fourier

inversion theorem, if both h∗ and its Fourier transform are integrable, this condition is satisfied.

Further situations where (4.12) holds are discussed in [25, Section IX].

In contrast to Theorem 5, the upper bound for the H-benefit-of-splitting above involves the

similarity between the unlabeled distributions (i.e., DTV(P0∥P1)) at the cost of having an additional

term which is inversely proportional to the hypothesis class complexity. The intuition behind our

proof is that if a data scientist is able to train a neural network with enough neurons, a group-blind

classifier is capable of guaranteeing high accuracy for both groups when their unlabeled distributions

are different. Consequently, there is no much room for accuracy improvement by splitting classifiers.

4.7.2 Comparison with the Cost-of-Coupling

We compare our notion of theH-benefit-of-splitting with the cost-of-coupling introduced by Dwork et

al. [86]. We first illustrate the difference between group blind, coupled, split classifiers through the

example of logistic regressions:

• a group blind classifier never uses a group attribute as an input: h(x) = logistic(wTx);

• a coupled classifier uses a group attribute while sharing other parameters: h(s, x) = logistic(wTx+

w0s);

• split classifiers are a set of classifiers applied to each separate group: hs(x) = logistic(wT
s x).

Now we recast the definition of the cost-of-coupling [86] using our notation.

Definition 10 ([86]). Let HC be a hypothesis class which contains coupled classifiers from a finite set

S ×X to [0, 1]. For a given loss function ℓ(·, ·), the cost-of-coupling is defined as

max
PS,X,Y

{
min
h∈HC

L(h)− min
hs∈HC
for s∈S

L({hs}s∈S )
}

,

59



where the maximum is over all distributions on S × X × {0, 1} and L(h) ≜ E [ℓ(Y, h(S, X))],

L({hs}s∈S ) ≜ E [ℓ(Y, hS(S, X))].

There are two important differences between the H-benefit-of-splitting (see Definition 9) and

the cost-of-coupling [86]. First, our notion quantifies the gain in accuracy by using split classifiers

rather than a group-blind classifier. In contrast, the cost-of-coupling compares coupled classifiers

with split classifiers which both take a group attribute as an input. Second, the cost-of-coupling is a

worst-case quantity as it maximizes over all distributions. By allowing our notion to rely on the data

distribution, Definition 9 captures more intricate scenarios for characterizing the benefit of splitting

classifiers. Furthermore, by taking the maximum over all distributions, we recover an analogous

result of Theorem 2 in [86].

Corollary 2. There exists a probability distribution QS,X,Y whose H-benefit-of-splitting is at least 1/2 under

1. Linear predictors: H = {I[wT x≥0] | w ∈ Rd};

2. Decision trees: H is the set of binary decision trees.

Furthermore, under this hypothetical distribution QS,X,Y, no matter which group-blind classifier h ∈ H is

used, there is always a group s ∈ {0, 1} such that E [|h(X)− ys(X)| | S = s] ≥ 1/2.

The proof technique used for this corollary can be extended to many other models (e.g., kernel

methods or neural networks) and we defer its proof to Appendix B.4.3.

4.7.3 Sample Limited Splitting

Consider the following scenario. A data scientist has access to finitely many samples and she/he

solves an empirical risk optimization in order to obtain an optimal group-blind classifier or a set of

optimal split classifiers. When these classifiers are deployed on new fresh samples, a natural question

is whether the optimal split classifiers still outperform the group-blind classifier. We introduce the

sample-limited-splitting which quantifies the effect of splitting classifiers within this finite sample

regime.

Definition 11. For a given hypothesis class H and ns i.i.d. samples {(xs,i, ys,i)}ns
i=1 from group

s ∈ {0, 1}, let ĥ∗ and {ĥ∗s }s∈{0,1} be optimal group-blind and split classifiers for the empirical ℓ1 loss,
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respectively:

ĥ∗ ∈ argmin
h∈H

max
s∈{0,1}

∑ns
i=1 |h(xs,i)− ys,i|

ns
, (4.13)

ĥ∗s ∈ argmin
h∈H

∑ns
i=1 |h(xs,i)− ys,i|

ns
, s ∈ {0, 1}. (4.14)

The sample-limited-splitting is defined as

ϵ̂split ≜ max
s∈{0,1}

E
[
|ĥ∗(X)− ys(X)| | S = s

]
− max

s∈{0,1}
E
[
|ĥ∗s (X)− ys(X)| | S = s

]
. (4.15)

Unlike the benefit-of-splitting or the H-benefit-of-splitting, the sample-limited-splitting is not

necessarily non-negative. In other words, with limited amount of samples available, splitting

classifiers may not improve accuracy for both groups. In what follows, we provide data-dependent

upper and lower bounds for the sample-limited-splitting in order to understand the effect of splitting

classifiers in the finite sample regime.

Theorem 6. Let H be a hypothesis class from X to {0, 1} with VC dimension D. If ĥ∗s is a minimizer

of the empirical ℓ1 loss ∑ns
i=1 |h(xs,i)− ys,i|/ns computed via ns i.i.d. samples {(xs,i, ys,i)}ns

i=1, then, with

probability at least 1− δ,

ϵ̂split ≤ min
s∈{0,1}

∑ns
i=1 |ĥ∗1(xs,i)− ĥ∗0(xs,i)|

ns
+ Ω, (4.16)

ϵ̂split ≥
1
2

max
s∈{0,1}

∑ns
i=1 |ĥ∗1(xs,i)− ĥ∗0(xs,i)|

ns
−DTV(P̂0∥P̂1)− 3λ−Ω, (4.17)

where P̂s is the empirical unlabeled distribution and

λ ≜
1
2

(
∑n0

i=1 |ĥ∗0(x0,i)− y0,i|
n0

+
∑n1

i=1 |ĥ∗1(x1,i)− y1,i|
n1

)
, Ω ≜ 4 max

s∈{0,1}

√
2D log(6ns) + 2 log(8/δ)

ns
.

Proof. See Appendix B.4.4.

Here, the term λ is the (average) training loss and Ω is the complexity term, which is approxi-

mately
√

D/ min{n0, n1}. As shown, the upper and lower bounds for ϵ̂split rely on four factors. The

first three factors, which also appear in our bounds of the H-benefit-of-splitting (see Theorem 5),

are the disagreement between the (empirically) optimal classifiers, the similarity of the (empirically)

unlabeled distributions, and the (empirically) training error. In addition to these factors, our bounds

for ϵ̂split also depend on the number of samples from each group, especially minority group with

less samples, and model complexity (measured by the VC dimension [11]).
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4.8 Repairing without Retraining

In the previous sections, we study when does using a group attribute bring the most performance

benefit. Here we consider how to use a group attribute to reduce disparate impact when it happens.

Specifically, we consider the setting where a black-box classifier h exhibits a performance disparity

across two groups. We assume that S = 0 attains the less favorable value of performance and refer to

S = 0 and S = 1 as the target and baseline groups, respectively. Our goal is to repair the model by

improving its performance on the target group.

We achieve this goal by perturbing the distribution of input variables for the target group (see

Figure 4.2 for an illustration). We refer to the perturbed distribution as a counterfactual distribution

and characterize its properties for common disparity metrics. We introduce a descent algorithm

to learn a counterfactual distribution from data. Then we demonstrate how influence functions

provide a natural “descent direction” in this setting and derive closed-form expressions for the

influence functions. Lastly, we discuss how the counterfactual distribution can be used to build a

data preprocessor that can help improve the model performance for the target group.

The tools we develop will be able to scrutinize and repair performance disparities in a way

that: (i) only affects one group; (ii) benefits the group it affects (on average); and (iii) incentivizes

individuals to reveal their group attributes at prediction time. The latter two points (i.e., do-no-harm

and opt-in) are important elements of ethical treatment disparity [see e.g., 183, 267]. In what follows,

we provide more details on this procedure.

4.8.1 Disparity Metrics

We measure the performance disparity between groups in terms of a disparity metric. Formally,

a disparity metric is a mapping M : P → R where P is the set of probability distributions over

X . We provide examples of M(P0) for common fairness criteria in Table 4.1. Note that we write

disparity metrics as M(P0) since they can be expressed as a function of P0 once the classifier and the

distributions PY|X,S, P1, and PS are fixed.

4.8.2 Counterfactual Distributions

A counterfactual distribution is a hypothetical probability distribution of input variables for the target

group that minimizes a specific disparity metric.
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Figure 4.2: Illustration of probability distributions affecting the disparate impact of a fixed classification model h. Here, P0
and P1 denote the distributions of input variables for groups where S = 0 and S = 1, respectively. A counterfactual
distribution QX is a perturbation of P0 that minimizes a specific measure of disparity. The counterfactual distribution
may not be unique, as illustrated by the shaded ellipse.

Performance Metric Acronym Disparity Metric

Statistical Parity SP Pr(Ŷ = 0|S = 0)− Pr(Ŷ = 0|S = 1)

False Discovery Rate FDR Pr(Y = 0|Ŷ = 1, S = 0)− Pr(Y = 0|Ŷ = 1, S = 1)

False Negative Rate FNR Pr(Ŷ = 0|Y = 1, S = 0)− Pr(Ŷ = 0|Y = 1, S = 1)

False Positive Rate FPR Pr(Ŷ = 1|Y = 0, S = 0)− Pr(Ŷ = 1|Y = 0, S = 1)

Table 4.1: Disparity metrics M(P0) for common fairness criteria. We assume that S = 0 attains the less favorable value of
performance so that M(P0) ≥ 0.

Definition 12. A counterfactual distribution QX is a distribution of input variables for the target

group such that:

QX ∈ argmin
Q′X∈P

∣∣M(Q′X)
∣∣ , (4.18)

where M(·) is a given disparity metric and P is the set of probability distributions over X .

There exist several ways to resolve the performance disparity of a fixed classifier by perturbing

the distributions of input variables. For example, one could simultaneously perturb the input

distributions for all groups to a “midpoint” distribution [see e.g., the distributions considered by

74, 98, 142, to achieve statistical parity].

While our tools could recover such distributions, we will purposely consider a counterfactual

distribution that alters the input variables for a group that attains the less favorable performance
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(i.e., the target group S = 0). This choice reflects our desire to resolve the performance disparity by

having the target group perform better, rather than having the baseline group perform worse. As we

discuss later, this choice reduces the data requirements to estimate the counterfactual distribution

and the individuals who are affected by the repair (i.e., this approach only produces a preprocessor

that affects individuals where S = 0).

At this point, an observant reader may wonder why a counterfactual distribution for the target

group is not simply the distribution of input variables over the baseline group (i.e., QX ≡ P1). In

fact, the distribution of input variables for the baseline group P1 is not necessarily a counterfactual

distribution when PY|X,S=0 ̸= PY|X,S=1. We illustrate this point with the following example.

Example 2. Consider a classification task where the input variables X = (X1, X2) ∈ {0, 1}2 are

drawn from distributions such that PX|S=s = PX1|S=s · PX2|S=s for s ∈ {0, 1} where:

Pr(X1 = 1|S = 0) = 0.9, Pr(X2 = 1|S = 0) = 0.2,

Pr(X1 = 1|S = 1) = 0.1, Pr(X2 = 1|S = 1) = 0.5.

Assume that the true outcome variables Y are drawn from the conditional distributions:

PY|X,S=0(1|x) = logistic(2x1 − 2x2),

PY|X,S=1(1|x) = logistic(2x1 + 4x2 − 3).
(4.19)

In this case, the Bayes optimal classifier for S = 1 is h(x) = I[x2=1]. Using the difference in FPR

as the disparity metric, h achieves M(P0) = 25.1%. In this case, setting P0 ← P1 would achieve a

disparity of M(P1) = 43.6%. In contrast, we can achieve a disparity metric of M(QX) = 0.0% for a

counterfactual distribution such that

QX(0, 0) = 0.50, QX(0, 1) = 0.09,

QX(1, 0) = 0.41, QX(1, 1) = 0.00.

Example 2 shows that counterfactual distributions may be non-trivial when the conditional

distributions of Y given X differ across groups (i.e., PY|X,S=0 ̸= PY|X,S=1). In particular, the condition

PY|X,S=0 ̸= PY|X,S=1 will always hold whenever counterfactual distributions do not completely

eliminate the disparity between groups. We formalize this statement in the next proposition.

Proposition 8. If M(QX) > 0 where QX is a counterfactual distribution for a disparity metric in Table 4.1,

then PY|X,S=0 ̸= PY|X,S=1.
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Proposition 8 illustrates how a counterfactual distribution can be used to detect cases where a

classifier exhibits an irreconcilable performance disparity between groups – i.e., a disparity that

cannot be resolved by perturbing the distributions of input variables for the target group. The

result complements various impossibility results on inevitable trade-offs between groups [see e.g.,

65, 161, 217]. It also provides a sufficient condition that can inform the need for treatment disparity

[see e.g., of 86, 160, 183, 267].

4.8.3 Measuring the Descent Direction

In what follows, we describe how to reduce the value of a disparity metric by perturbing the

distribution of input variables over the target group P0.

We start by formally defining the local perturbation of an input distribution.

Definition 13. The perturbed distribution P̃0 over the target group (S = 0) is given by

P̃0(x) ≜ P0(x)(1 + ϵ f (x)), ∀x ∈ X (4.20)

where f : X → R is a perturbation function from the class of all functions with zero mean and unit

variance w.r.t. P0, and ϵ > 0 is a positive scaling constant chosen so that P̃0 is a valid probability

distribution.

Here, f (x) represents a direction in the probability simplex while ϵ represents the magnitude

of perturbation [see e.g., 8, 41, 127, for other applications of local perturbations of measures in

information theory].

As we will see shortly, the direction of steepest descent for disparate impact can be measured

using an influence function [see e.g., 129, 162, for other uses in machine learning].

Definition 14. For a disparity metric M(·), the influence function ψ : X → R is given by

ψ(x) ≜ lim
ϵ→0

M ((1− ϵ)P0 + ϵδx)−M(P0)

ϵ
(4.21)

where δx(z) = I[z=x] is the delta function at x.

Intuitively, given a sufficiently large dataset from the deployment population, the influence

function approximates the change in a disparity metric when a sample x ∈ X from the target group

is removed (or added) to the dataset.
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In Proposition 9, we show that perturbing the distribution P0 along the direction defined by

−ψ(x) produces the largest local decrease of the disparity metric. That is, −ψ(x) reflects the direction

of steepest descent in disparate impact.

Proposition 9. Given a disparity metric M(·), we have that

argmin
f (x)

lim
ϵ→0

M(P̃0)−M(P0)

ϵ
=

−ψ(x)√
E [ψ(X)2|S = 0]

, (4.22)

for any influence function ψ : X → R such that E
[
ψ(X)2|S = 0

]
̸= 0.

Proposition 10 shows that when disparity is measured using a linear combination of metrics,

the influence function for the compound metric can be expressed as a linear combination of the

influence functions for its components.

Proposition 10. Given any convex combination of K disparity metrics M(P0) = ∑K
i=1 λiMi(P0), the influence

function of the compound disparity metric M(P0) has the form:

ψ(x) =
K

∑
i=1

λiψi(x). (4.23)

Proposition 10 allows us to consider a larger class of disparity measures than those shown in

Table 4.1. For instance, one can recover a counterfactual distribution to achieve equalized odds [119]

by using a convex combination of influence functions for FPR and FNR.

4.8.4 Computing Influence Functions

We now present closed-form expressions for the influence functions of disparity metrics shown in

Table 4.1. The expressions will be cast in terms of two classifiers:

• h(x): the black-box classifier that we aim to repair;

• ŷ0(x): a classifier that uses the same input variables as h, but aims to predict the true outcome

for individuals in the target group, PY|X,S=0(1|x).

Given h(x), we train ŷ0(x) using an auditing dataset Daudit = {(xi, yi, si)}n
i=1 drawn from the

deployment population. With these models in hand, we can then compute influence functions using

closed-form expressions shown in the following proposition.
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Proposition 11. The influence functions for the disparity metrics in Table 4.1 can be expressed as

ψSP(x) = −h(x) + µ̂0,

ψFDR(x) =
h(x)(1− ŷ0(x))− ν0,1h(x)

µ̂0
,

ψFNR(x) =
(1− h(x))ŷ0(x)− γ0,1ŷ0(x)

µ0
,

ψFPR(x) =
h(x)(1− ŷ0(x))− γ1,0(1− ŷ0(x))

(1− µ0)
,

where µs, µ̂s, γa,b, and νa,b are constants such that

µs ≜ Pr(Y = 1|S = s),

µ̂s ≜ Pr(Ŷ = 1|S = s),

γa,b ≜ Pr(Ŷ = a|Y = b, S = 0),

νa,b ≜ Pr(Y = a|Ŷ = b, S = 0).

4.8.5 Learning Counterfactual Distributions from Data

So far we have shown that influence functions can be used to evaluate the direction of steepest

descent of a disparity metric (Proposition 9), and that the value of an influence function can be

estimated using data from the deployment population (Proposition 11).

Considering these results, one would expect that disparity could be minimized by repeatedly (i)

perturbing the distribution in the direction of steepest descent (4.22), and (ii) estimating the influence

function at the new, perturbed distribution. Repeating these steps, we would recover an approximate

solution to (4.18) – i.e., an approximate counterfactual distribution.

In Algorithm 3, we formalize this intuition by presenting a descent procedure to recover a

counterfactual distribution for a given disparity metric M(·). The procedure is analogous to stochastic

gradient descent in the space of distributions over X , where the resampling at each iteration

corresponds to a gradient step. Given a classifier h and a dataset {(xi, yi, si)}n
i=1 from the distribution

PX,Y,S, the procedure outputs a dataset drawn from a counterfactual distribution.

The procedure pairs each point with a sampling weight wi, which is initialized as wi = 1.0. At each

iteration, it first computes the value of the influence function ψ(x). Next, it updates the values of each

sampling weight for each point in the target group as (1− ϵψ(xi)) · wi, where ϵ is a user-specified

step size parameter. The updated sampling weights represent the direction in which the distribution

for the target group should be perturbed to reduce M(·). The data points from the target group are
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Algorithm 3 Distributional Descent.
Input:

h : X → [0, 1] ▷ classification model
D = {(xi, yi, si)}n

i=1 ▷ data from deployment population
M(·) ▷ disparity metric
ϵ > 0 ▷ step size

Initialize

I0 ← {i = 1, . . . , n | si = 0}
D0 ← (xi, yi) for i ∈ I0 ▷ samples where si = 0
D1 ← (xi, yi) for i ̸∈ I0 ▷ samples where si ̸= 0
w0 ← [wi]i∈I0 where wi = 1.0 ▷ initialize weights
M← M(D0 ∪D1) ▷ evaluate disparity metric
repeat

Mold ← M
ψi ← ψ(xi) for i ∈ I0 ▷ compute ψ(xi) for points in D0
wi ← (1− ϵψi) · wi for i ∈ I0
D̃0 ← Resample(D0, w0)

M← M(D̃0 ∪D1) ▷ evaluate disparity metric
until M ≥ Mold

return: w0, D̃0 ▷ samples from counterfactual distribution

procedure Resample(D, w)
return: |D| points sampled from D using the weights w

end procedure

then resampled with their sampling weights. The set of resampled points mimics one drawn from

the perturbed distribution.

The procedure determines if the classifier still has disparate impact at the end of each iteration

by computing the value of M(·) on the set of resampled points. These steps are repeated until M(·)
ceases to decrease. Once the procedure stops, it outputs: (i) dataset drawn from a counterfactual

distribution; (ii) a set of sampling weights for each point from the target group, which can be used

to draw samples from the counterfactual distribution.

4.8.6 Model Repair

Next, we describe how to use counterfactual distributions to repair classifiers that exhibit disparate

impact.

Preprocessor Given a classifier h(x), we aim to mitigate disparate impact by constructing a prepro-

cessor T : X → X that alters the features of the target group. Thus, the repaired classifier h̃(x) will
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operate as:

h̃(x) =


h(T(x)) if s = 0,

h(x) otherwise.
(4.24)

The preprocessor is a (potentially randomized) mapping that transforms the distribution of samples

over the target population into the counterfactual distribution, i.e., given a random variable X drawn

from the target population distribution, the distribution of T(X) will approximate counterfactual

distribution.

Optimal Transport We produce the preprocessor by solving an optimal transport problem. To this

end, we require the following inputs:

• D0, which represents the original samples for the target group. We assume D0 contains n0

samples, of which m are distinct: {x1, · · · , xm}.

• D̃0, which represents the samples drawn from the counterfactual distribution (i.e., the data

produced via resampling in Algorithm 3). We assume that D̃0 contains ñ0 samples, of which m̃

are distinct: {x̃1, · · · , x̃m̃}.

With these samples at hand, we formulate an optimal transport problem of the form:

min
γij∈R+

m

∑
i=1

m̃

∑
j=1

Cijγij (4.25a)

s.t.
m̃

∑
j=1

γij = pi i = 1, · · · , m (4.25b)

m

∑
i=1

γij = qj j = 1, · · · , m̃. (4.25c)

Here, Cij represents the cost of altering the input variables from xi to x̃j given a user-specified

cost function that we will discuss shortly; p, q are the empirical estimates of P0 and QX , respectively,

pi =
1
n0

∑
x∈D0

δxi (x), qj =
1
ñ0

∑
x∈D̃0

δx̃j(x);

The optimal transport problem in (4.25) is a standard linear program that aims to find a coupling

of p and q, γ [see e.g., 216, 277]. Formally, a coupling is a joint probability distribution with

marginal distributions specified by p and q. Given the minimal-cost coupling γ∗, one can construct
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a (randomized) preprocessor T(·) which takes a sample xi and returns an altered sample x̃j with

probability γ∗ij/pi.

We note that the linear programming formulation in (4.25) is designed for settings with discrete

input distributions. In settings when the distributions P0 and QX are continuous, an analogous

optimal transport problem can be formulated and solved with other approaches [see e.g., 9, 35].

Choice of Cost Function The cost function Cij controls how samples of the target group are

perturbed. By default, one could use a standard distance metric such as the L2-norm [e.g., 74, 98, 142].

However, one could also consider additional criteria to fine-tune the mapping specified by T(·). For

example, one can specify a cost function that avoids specific kinds of change by setting the value

of Cij to a large constant so as to penalize undesirable mappings [e.g., a mapping that would alter

immutable attributes such as marital status 268].

Customization via Constraints Users can also fine-tune the behavior of the preprocessor by adding

custom constraints to the feasible region of optimal transport problems as in (4.25). For example, one

can impose constraints on individual fairness to ensure that the repaired classifier will “treat similar

individuals similarly” [see e.g., 85]. This behavior could be induced by including constraints of the

form:

1
2

m̃

∑
j=1

∣∣∣∣γij

pi
−

γl j

pl

∣∣∣∣ ≤ d(xi, xl) for all i, l ∈ [m].

Here, the LHS is the total-variation distance [69] between the distributions of T(xi) and T(xl), and

d(·, ·) : X ×X → R+ is a distance metric that reflects the similarity between samples.

4.9 Numerical Experiments

We illustrate the theoretical results presented in this chapter through experiments. In Section 4.6, we

presented an algorithm (Algorithm 2) for computing the benefit-of-splitting. In particular, when the

data distribution is known, this algorithm provably converges to the exact value of the benefit-of-

splitting. To evaluate Algorithm 2, we conduct experiments on a synthetic example where both the

data distribution and the values of the benefit-of-splitting are known. In Section 4.7, we characterized

a taxonomy of splitting when classifiers are restricted over a hypothesis class. We demonstrate

this taxonomy of splitting through experiments on 40 real-world datasets. In Section 4.9.3, we
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Figure 4.3: We demonstrate the performance of Algorithm 2 for computing the FER-benefit-of-splitting ϵsplit,FER on
synthetic datasets. Left: the ellipses are the level sets of the unlabeled distribution P0 and the dash line is the labeling
function y0 with a arrow indicating the region where points are labeled as +. Right: ϵsplit,FER computed by different
approaches along with its true values.

demonstrate how counterfactual distributions can be used to avoid disparate impact for classifiers

on real-world datasets.

4.9.1 Synthetic Datasets

We introduced the FER-benefit-of-splitting ϵsplit,FER in Section 4.4.2 and proposed an efficient

procedure for computing this quantity (Algorithm 2). Here, we validate Algorithm 2 through

experiments on synthetic datasets. For a fixed parameter θ ∈ [0, π/2], let two groups’ unlabeled

distributions be zero-mean Gaussian distributions with different covariance matrices: P0 ∼ N (0, ΣΣΣ0)

and P1 ∼ N (0, ΣΣΣ1) where

ΣΣΣ0 =

 0.5 cos(θ)2 + 1 0.5 sin(θ) cos(θ)

0.5 sin(θ) cos(θ) 0.5 sin(θ)2 + 1

 , ΣΣΣ1 =

 0.5 cos(θ)2 + 1 −0.5 sin(θ) cos(θ)

−0.5 sin(θ) cos(θ) 0.5 sin(θ)2 + 1

 .

The distributions P0 and P1 correspond to θ counterclockwise and clockwise rotation of the Gaussian

distribution N (0, diag(1.5, 1)). Furthermore, let the labeling functions be

y0(x) =


1 if (− sin(θ), cos(θ)) · x > 0

0 otherwise,
y1(x) =


1 if (sin(θ), cos(θ)) · x > 0

0 otherwise.
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The left-hand side of Figure 4.3 displays the level sets of P0 as well as its labeling function.

In this synthetic example, ϵsplit,FER has a closed-form expression: ϵsplit,FER = 2 Pr(X ∈ A | S = 0)

where A ≜ {x = (x1, x2) ∈ R2 | y1(x) = 1, x2 < 0}. When θ = 0, two groups share the same

unlabeled distribution (i.e., P0 = P1) and the same labeling function (i.e., y0 = y1). Hence, there is no

benefit of splitting classifiers: ϵsplit,FER = 0. On the other hand, when θ = π/2, two groups have the

same unlabeled distribution but completely different labeling functions. Splitting classifiers achieves

the most benefit: ϵsplit,FER = 0.5.

By varying the values of θ and drawing 10k samples from each group, we compare the true values

of ϵsplit,FER with the outputs from Algorithm 2 as well as other empirical approximations. Recall that

Algorithm 2 requires a conditional distribution Pr(S = s | X = x) and the labeling functions y0 and

y1. Since the conditional distribution and labeling functions are known in this synthetic example,

we feed their explicit forms into Algorithm 2 for computing ϵsplit,FER (orange curve in Figure 4.3

Right). In practice, the conditional distribution and labeling functions are unknown, so we also

train a Naive Bayes classifier [104] to approximate Pr(S = s | X = x) and two linear support-vector

machine (SVM) classifiers [104] to approximate the labeling functions. By feeding these binary

classifiers into Algorithm 2, another approximation of ϵsplit,FER is output (red curve in Figure 4.3

Right). Furthermore, we compute ϵsplit,FER empirically by training optimal group-blind and split

classifiers via logistic regression, linear SVM, or Naive Bayes classifier. Computing the false error

rate reduction leads to three empirical approximations of ϵsplit,FER.

As shown in Figure 4.3, when Algorithm 2 has access to the explicit forms of Pr(S = s | X = x),

y0, and y1, it accurately recovers ϵsplit,FER. This is remarkable since even with the knowledge of

the underlying distributions, it is unclear how to compute ϵsplit,FER directly from its definition. We

also observe that Algorithm 2 applied to binary classifiers outputs more accurate approximation of

ϵsplit,FER than the approximations produced by using logistic regression, linear SVM, or Naive Bayes

classifier.

To summarize, we conclude that (i) when the underlying distribution is known, Algorithm 2

can produce the precise values of ϵsplit,FER and has convergence guarantees; (ii) when Algorithm 2

is fed with binary classifiers, it produces reliable approximation of ϵsplit,FER; (iii) computing the

FER-benefit-of-splitting empirically by training optimal classifiers could incur high approximation

errors.
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Figure 4.4: We demonstrate how the effect of splitting classifiers is determined by the two factors: disagreement between
optimal classifiers (y-axis) and total variation distance between unlabeled distributions (x-axis). We restrict both group-
blind and split classifiers to logistic regression classifiers (left) or decision tree classifiers (right). Each dot represents a
dataset in OpenML with color indicating the effect of splitting classifiers and texts indicating dataset ID. Theorem 5 reveal
a taxonomy of splitting where splitting does not bring much benefit (white region); splitting brings the most benefit (yellow
region); or splitting has undetermined effect (grey region).

4.9.2 Datasets from OpenML

In Section 4.7, we analyzed the effect of splitting classifiers when both group-blind and split classifiers

are restricted over the same hypothesis class. The bounds in Theorem 5 reveal two main factors

that could determine this effect: disagreement between optimal classifiers and similarity between

unlabeled distributions. Here we demonstrate how these two factors influence the effect of splitting

through experiments on 40 real-world datasets, collected from OpenML [272].

Setup. We preprocess all 40 datasets by adopting the procedure described in [86]. All categorical

features are transformed into binary by assigning the most frequent object to 1 and the rest of the

objects to 0. The first binary feature is selected as the group attribute and, hence, these datasets are

“semi-synthetic”. We truncate the datasets so that each group contains at most 10k data points. In

each dataset, there are at least 8k data points per group, minimizing the effect of potential lack of

samples per group.

Implementation. We obtain optimal split classifiers via training a logistic regression model with

the LIBLINEAR solver [95], fitting the model by drawing samples from each group. Since an optimal
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group-blind classifier is a minimizer of minh∈Hmaxw∈[0,1] wL0(h) + (1− w)L1(h) where Ls(h) is the

loss of a classifier h on group s ∈ {0, 1}, we solve this optimization approximately by considering

its dual formula maxw∈[0,1] minh∈H wL0(h) + (1− w)L1(h) and use 5-fold cross validation to tune

the parameter w therein. Although this procedure of training group-blind classifier needs access to

data points’ group attribute, it does not violate group-blindness [183] because the output classifier

does not use the group attribute as an input when deploying on new data. In addition to logistic

regressions, we repeat this experiment by training decision tree classifiers with depth 7. The

disagreement between optimal classifiers is calculated by applying the optimal split classifiers on

each data point and computing the discrepancy. We estimate the total variation distance between

unlabeled distributions by applying the procedures introduced in [152].

Result. In Figure 4.4, we illustrate the taxonomy of splitting delineated by our bounds in Theorem 5.

We restrict the hypothesis class to be logistic regression (Figure 4.4 Left) or to be decision trees with

depth 7 (Figure 4.4 Right). Each dot in the figures represents a dataset with its corresponding ID

number in the OpenML dataset. The color captures the loss reduction by using the optimal split

classifiers compared to deploying the optimal group-blind classifier (red means splitting has more

benefit and blue means splitting does not bring much benefit). The location of each dot is determined

by the two factors: disagreement between optimal classifiers (y-axis) and total variation distance

between unlabeled distributions (x-axis).

• The upper bound in Theorem 5 indicates that splitting does not bring much benefit when

the optimal classifiers are similar. As shown in Figure 4.4, all datasets which are below the

horizontal dash line have small benefit by splitting classifiers (i.e., dots are blue).

• The lower bound in Theorem 5 indicates that splitting benefits model performance when

the optimal classifiers are different and the unlabeled distributions are similar. As shown in

Figure 4.4, there are two datasets (ID 122 and 1169) which are in the yellow region and they all

achieve large benefit from splitting classifiers.

• When both the optimal classifiers and the unlabeled distributions are different, the effect of

splitting classifiers can not be determined by the bounds in Theorem 5. As shown in Figure 4.4,

the datasets in the grey region could have either large benefit by splitting classifiers or limited

benefit. Furthermore, we have conjectured (see Section 4.7.1) that in this case a more complex
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hypothesis class leads to less benefit from splitting classifiers. This is further evidenced in the

experiments: when both group-blind and split classifiers are logistic regressions (Figure 4.4

Left), the datasets which are in the grey region all achieve non-trivial benefit by splitting

classifiers. In contrast, when decision trees are used (Figure 4.4 Right), there are datasets (e.g.,

ID 1240) in the grey region which achieve a limited amount of benefit by splitting.

4.9.3 Real-world Datasets

Setup We aim to recover counterfactual distributions for different disparity metrics in Table 4.1.

To this end, we consider processed versions of the adult dataset [21] and the ProPublica compas

dataset [10].

For each dataset, we use:

• 30% of samples to train a classifier h(x) to repair;

• 50% of samples to recover a counterfactual distribution via Algorithm 3;

• 20% of samples as a hold-out set to evaluate the performance of the repaired model.

We use ℓ2-logistic regression to train a classifier h(x) as well as the classifier ŷ0(x) that we

use to estimate the influence functions in Algorithm 3. We tune the parameters and estimate the

performance of each classifiers using a standard 10-fold CV setup.

Our setup assumes that the data used to train and repair the model are drawn from the same

distribution, which may not be the case in settings with dataset shift. Our setup also differs from

real-world settings in that we use 70% of the samples in each dataset to estimate the counterfactual

distribution. In practice, however, we would use all available samples since we would be given the

classifier to repair.

Discussion In Table 4.2, we show the effectiveness of preprocessors built to mitigate different kinds

of disparity for the classifiers trained on the adult and compas datasets.

We build each preprocessor as follows. We first resample data from the target population accord-

ing to Algorithm 3. This outputs a dataset of samples drawn from the counterfactual distribution.

Next, we use the resampled dataset to produce an empirical estimate of the counterfactual distribu-

tion QX . This distribution is then used to obtain the preprocessor by solving a version of (4.25) with

the cost function Cij = ∥xi − x̃j∥2
2.
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Original Model Repaired Model Target Group AUC

Dataset Metric

Target

Group

Baseline

Group

Target

Group

Disc.
Gap

Target

Group

Disc.
Gap

Before

Repair

After

Repair

adult SP Female 0.696 0.874 0.178 0.688 -0.007 0.895 0.758

adult FNR Female 0.478 0.639 0.161 0.483 0.004 0.895 0.880

adult FPR Male 0.021 0.119 0.098 0.023 0.002 0.829 0.714

compas SP White 0.514 0.594 0.079 0.533 0.018 0.704 0.667

compas FNR White 0.350 0.487 0.137 0.439 0.088 0.704 0.699

compas FPR Non-white 0.190 0.278 0.087 0.160 -0.029 0.732 0.680

Table 4.2: Change in disparate impact for classification models for adult and compas when paired with a randomized
preprocessor built to mitigate different kinds of disparity. Each row shows the value of a specific performance metric for the
classifier over the target and baseline groups (e.g., SP, FNR, and FPR). The target group is defined as the group that attains
the less favorable value of the performance metric. The preprocessor aims to reduce to difference in performance metric by
randomly perturbing the input variables for individuals in the target group. We also include AUC to show the change in
performance due to the randomized preprocessor. All values are computed using a hold-out sample that is not used to train
the model or build the preprocessor.

As shown, the approach reduces disparate impact in the target group, while having a minor effect

on test accuracy at various decision points across the full ROC curve. Counterfactual distributions

provide a way to scrutinize this mapping in greater detail. As shown in Table 4.3, one can visualize

the differences between the observed distribution and counterfactual distribution to understand how

the input variable distributions are altered to reduce disparity.

This kind of constrastive analysis may be helpful in understanding the factors that produce

performance disparities in the first place. For example, the differences between the observed

distribution P0 and the counterfactual distribution QX could be used to identify prototypical samples

[see e.g, 37, 157], or to score features in terms of their ability to produce disparities in the deployment

population [2, 71].

4.10 Conclusion

Split classifiers should only be considered when it is ethical and legal to do so, and when it does not

result in harm to any underlying group. Eliminating disparate treatment does not necessarily lead to

a group-fair classifier. On the one hand, a group attribute could correlate with other proxy variables

which are used for decision making [130, 288]. On the other hand, the group attribute can be an

important feature for the prediction task [67, 160]. In the latter case, using a group-blind classifier

for achieving treatment parity may lead to an unfavorable accuracy trade-off.
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Observed Counterfactual

Female Male SP
Female

FNR
Female

FPR
Male

Married 18% 63% 39% 23% 54%
Immigrant 10% 11% 11% 11% 12%
HighestDegree_is_HS 32% 32% 24% 28% 37%
HighestDegree_is_AS 7% 8% 9% 9% 6%
HighestDegree_is_BS 15% 18% 21% 17% 13%
HighestDegree_is_MSorPhD 6% 7% 13% 8% 5%
AnyCapitalLoss 3% 5% 8% 5% 4%
Age ≤ 30 39% 29% 29% 38% 35%
WorkHrsPerWeek<40 38% 17% 33% 37% 19%
JobType_is_WhiteCollar 34% 19% 36% 35% 15%
JobType_is_BlueCollar 5% 34% 4% 5% 39%
JobType_is_Specialized 23% 21% 29% 23% 20%
JobType_is_ArmedOrProtective 1% 2% 1% 1% 3%
Industry_is_Private 73% 69% 64% 69% 70%
Industry_is_Government 15% 12% 22% 17% 12%
Industry_is_SelfEmployed 5% 15% 8% 6% 13%

Table 4.3: Counterfactual distributions produced using Algorithm 3 for a classifier on adult. We observe that different
metrics produce different counterfactual distributions. By comparing the distribution of the target group with the
counterfactual distribution, we can evaluate how the repaired classifier will perturb their features to reduce disparity.

Motivated by the above discussion, we investigated the following fundamental question: when

disparate treatment is allowed, is it beneficial to incorporate the group attribute as an input feature

in order to improve a classifier’s performance? Due to the bias-variance trade-off, in practice, the

answer will depend on the number of training data and the complexity of the hypothesis class. In

this chapter, we focused on an information-theoretic regime where the underlying data distribution

is known—or infinitely many data points are available—and the hypothesis class is unrestricted. To

evaluate the potential gain in average performance from allowing a classifier to exhibit disparate

treatment, we compared split classifiers with group-blind classifiers and characterized precise

conditions where splitting classifiers achieves the most benefit. Our results show that—in this narrow

information-theoretic regime—splitting classifiers follows the non-maleficence principle and allows a

data scientist to deploy more accurate and suitable models for each group.

Besides investigating the conditions for fair use of group attributes, we also introduced a new

distributional paradigm to mitigate disparate impact by using group attributes. Our framework

is based on counterfactual distributions, which can be efficiently computed given a fixed model

and data from a population of interest. Specifically, we proposed a descent procedure to estimate a

counterfactual distribution from data. We proved that the best (first-order) direction is the influence

functions, which own closed-form expressions for common group fairness criteria. The estimated

counterfactual distribution yields a preprocessor that can improve the model performance for the

disadvantaged group.

77



Chapter 5

An Estimation-Theoretic View of

Privacy

Let S denote a private variable to be hidden (e.g., political preference) and X be a useful variable

that depends on S (e.g., movie ratings). Our goal is to disclose a realization of a random variable Y,

produced from X through a randomized mapping PY|X called the privacy mechanism. Here, S, X, and

Y satisfy the Markov condition S → X → Y. We assume that an analyst will provide some utility

based on an observation of Y (e.g., movie recommendations), while potentially trying to estimate S

from Y.

We derive privacy-utility trade-offs (PUTs) when both privacy and utility are measured in terms of

the mean-squared error of reconstructing functions of S and X from an observation of Y. We analyze

three related scenarios: (i) an aggregate setting, where certain functions of X can be, on average,

reconstructed from the disclosed variable while controlling the MMSE of estimating functions of

S and PS,X is known to the privacy mechanism designer, (ii) a composite setting, where specific

functions of S and X have different privacy/utility reconstruction requirements and PS,X is known

to the privacy mechanism designer, and (iii) a restricted-knowledge setting, where PS,X is unknown,

but the correlation between a target function to be hidden and a set of functions which are known to

be hard to infer from the disclosed variable is given.
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5.1 Overview and Main Contributions

We present the outline of this chapter and a summary of our main contributions.

Aggregate PUTs. We start by studying the problem of limiting an untrusted party’s ability to

estimate functions of S given an observation of Y, while controlling for the MMSE of reconstructing

functions of X given Y. Here, privacy and utility are measured in terms of the χ2-information

between S and Y and the χ2-information between X and Y, denoted by χ2(S; Y) and χ2(X; Y) (cf.

(5.2)), respectively. We introduce the χ2-privacy-utility function in Section 5.4. Bounds of this function

are presented in Theorem 7. In particular, the upper bound is cast in terms of the PICs of PS,X and

provides an interpretation of the trade-off between privacy and utility that goes beyond simply using

maximal correlation. We also prove that the upper bound is achievable in the high-privacy regime in

Theorem 8.

Composite PUTs. χ2-based metrics guarantee privacy and utility in a uniform sense, capturing the

aggregate mean-squared error of estimating any functions of the private and the useful variables.

However, in many applications, specific functions of S and X that should be hidden/revealed

are known a priori. This knowledge enables a more refined design of privacy mechanisms that

specifically target these functions. We explore this finer-grained approach in Section 5.5, and propose

a PIC-based convex program for computing privacy mechanisms within this setting. We demonstrate

the practical feasibility of the convex programs through two numerical experiments in Section 5.7,

deriving privacy mechanisms for a synthetic dataset and a real-world dataset. In the latter case, we

approximate PS,X using its empirical distribution.

Restricted knowledge of the distribution. The aforementioned aggregate and composite PUTs

require knowledge of the joint distribution PS,X . In Section 5.6, we forgo this assumption, and study a

simpler setting where S = ϕ(X) (i.e., the private variable is a function of the data) and the correlation

between ϕ(X) and a set of functions (composed with the data)
{

ϕj(X)
}m

j=1 is given. In practice, ϕ(X)

may be a sensitive feature of the data X, and
{

ϕj(X)
}m

j=1 is a collection of other features from which

E
[
ϕ(X)ϕj(X)

]
can be accurately estimated.

Our goal here is to derive lower bounds on the MMSE of estimating a real-valued function of

X, namely ϕ(X), from Y for any privacy mechanism PY|X. These bounds are cast in terms of the
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MMSE of estimating ϕj(X) from Y and the correlation between ϕ(X) and
{

ϕj(X)
}m

j=1. This leads to a

converse result in Theorem 10: if the MMSE of estimating ϕj(X) from Y is large and ϕ(X) is strongly

correlated with ϕj(X), then the MMSE of estimating ϕ(X) from Y will also be large and privacy is

assured in an estimation-theoretic sense. The inverse result is straightforward: if ϕ(X) and ϕj(X) are

strongly correlated and ϕj(X) can be reliably reconstructed from Y, then ϕ(X) can also be reliably

estimated from Y. This intuitive trade-off is at the heart of the estimation-theoretic view of privacy,

and demonstrates that no function of X can remain private whilst other strongly correlated functions

are revealed through Y. The results in Section 5.6 make this intuition mathematically precise.

5.2 Related Works

Currently, the most adopted definition of privacy is differential privacy [87], which enables queries

to be computed over a database while simultaneously ensuring privacy of individual entries of

the database. Information-theoretic quantities, such as Rényi divergence, can be used to relax the

definition of differential privacy [195]. Fundamental bounds on composition of differentially private

mechanisms were given by Kairouz et al. [148]. Recently, a new privacy framework called Pufferfish

[155] was developed for creating customized privacy definitions.

Several papers, such as Sankar et al. [240], Calmon and Fawaz [51], Asoodeh et al. [15], and

Makhdoumi et al. [187], have studied information disclosure with privacy guarantees through an

information-theoretic lens. For example, Sankar et al. [240] characterized PUTs in large databases

using tools from rate-distortion theory. Calmon and Fawaz [51] used expected distortion and

mutual information to measure utility and privacy, respectively, and characterized the PUT as an

optimization problem. Makhdoumi et al. [187] introduced the privacy funnel, where both privacy and

utility are measured in terms of mutual information, and showed its connection with the information

bottleneck [263]. The PUT was also explored in [186] and [229] using mutual information as a privacy

metric.

Other quantities from the information-theoretic literature have been used to quantify privacy

and utility. For example, Asoodeh et al. [17] and Calmon et al. [53] used estimation-theoretic tools to

characterize fundamental limits of privacy. Liao et al. [179, 180] explored the PUT within a hypothesis

testing framework. Issa et al. [132, 133] introduced maximal leakage as an information leakage metric.

There is also significant recent work in information-theoretic privacy in the context of network
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secrecy. For example, Li and Oechtering [176] proposed a new privacy metric based on distributed

Bayesian detection which can inform privacy-aware system design. Recently, Tripathy et al. [264] and

Huang et al. [126] used adversarial networks for designing privacy mechanisms that navigate the

PUT. Takbiri et al. [259] considered obfuscation and anonymization techniques and characterized the

conditions required to obtain perfect privacy.

We use the definition of PICs presented in [53], but note that the PICs predate [53] by many

decades (e.g., [48, 109, 112, 124, 230, 241, 295]). Recently, Huang et al. [127] considered the PICs by

analyzing the “divergence transition matrix” [127, Eq. 2]. Specifically, there are different directions

of local perturbation [41] of input distribution and the direction which leads to the greatest influence

of the output distribution of a noisy channel can be identified [127] by specifying the singular vector

decomposition of the divergence transition matrix. In the follow-on work, Huang et al. [128] used the

divergence transition matrix in the context of feature selection. The singular values of the divergence

transition matrix are exactly the square root of the PICs considered here, and are also related to the

singular values of the conditional expectation operator, as also noted by Makur and Zheng [188] and

originally by Witsenhausen [295] and others [48]. We build on these prior works by using the PICs

for quantifying privacy-utility trade-offs.

5.3 Preliminaries

Notation. For a positive integer n, we define the set [n] ≜ {1, · · · , n}. We denote matrices in bold

capital letters (e.g., P) and vectors in bold lower-case letters (e.g., p). For a vector p, diag(p) is defined

as the matrix with diagonal entries equal to p and all other entries equal to 0. The span of a set V of

vectors is

span(V) ≜
{

k

∑
i=1

λivi

∣∣∣ k ∈N, vi ∈ V , λi ∈ R

}
.

The dimension of a linear span is denoted by dim(span(V)). Let (A, dA) and (B, dB) be two metric

spaces. We say that f : A → B is Lipschitz over A′ ⊆ A if there exists L ≥ 0 such that, for all

a1, a2 ∈ A′,
dB( f (a1), f (a2)) ≤ LdA(a1, a2). (5.1)

For a random variable U with probability distribution PU , we denote

PU min ≜ inf{PU(u) | u ∈ U},

81



where U is the support set of U. The MMSE of estimating U given V is

mmse(U|V) ≜ min
U→V→Û

E
[
(U − Û)2

]
= E

[
(U −E [U|V])2

]
.

The χ2-information between two random variables U and V is defined as

χ2(U; V) ≜ E

[(
PU,V(U, V)

PU(U)PV(V)

)]
− 1. (5.2)

Let PU and QU be two probability distributions taking values in the same discrete and finite set U .

We denote ||PU −QU ||1 ≜ ∑u∈U |PU(u)−QU(u)|.
Throughout this chapter, we assume all random variables are discrete with finite support sets.

5.4 Aggregate PUTs:

The Chi-Square-Privacy-Utility Function

We start our analysis by adopting χ2-information as a measure of both privacy and utility. As seen

in the previous section, χ2(S; Y) = ∑d
i=1 λi(S; Y), where d = min{|S|, |Y|} − 1. If χ2(S; Y) < 1, then,

from characterization 2 in Theorem 1, the MMSE of reconstructing any zero-mean, unit-variance

function of S given Y is lower bounded by 1− χ2(S; Y), i.e., all functions of S cannot be reconstructed

with small MMSE given an observation of Y. Note that this argument also holds true when we replace

χ2-information with the maximal correlation. In fact, in the high privacy regime, the PUT under

χ2-information is essentially equivalent to the PUT when both privacy and utility are measured using

maximal correlation. We make this intuition precise at the end of this section. When 1 ≤ χ2(S; Y),

certain private functions, on average, may be estimated from Y but, in general, most private functions

are still kept in secret. Analogously, when χ2(X; Y) is large, certain functions of X can be, on average,

reconstructed (i.e., estimated) with small MMSE from Y. We demonstrate next that the PICs play a

central role in bounding the PUT in this regime.

We first introduce the χ2-privacy-utility function. This function captures how well an analyst

can reconstruct functions of the useful variable X while restricting the analyst’s ability to estimate

functions of the private variable S.

Definition 15. For a given joint distribution PS,X and 0 ≤ ϵ ≤ χ2(S; X), we define the χ2-privacy-
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utility (trade-off) function as

Fχ2(ϵ; PS,X) ≜ sup
PY|X∈D(ϵ;PS,X)

χ2(X; Y),

where D(ϵ; PS,X) ≜ {PY|X | S→ X → Y, χ2(S; Y) ≤ ϵ}.

It has been proved in [125, 294] that there is always a privacy mechanism PY|X which achieves the

supremum in Fχ2(ϵ; PS,X) using at most |X |+ 1 symbols (i.e., |Y| ≤ |X |+ 1). The following lemma

gives an alternative way to compute the χ2-information, in the discrete, finite setting.

Lemma 11. Suppose S→ X → Y. Then

χ2(X; Y) = tr(A)− 1, (5.3)

χ2(S; Y) = tr(BA)− 1, (5.4)

where, using (2.15),

A ≜ QX,YQT
X,Y, B ≜ QT

S,XQS,X .

Proof. See Appendix C.1.1.

The following lemma characterizes some properties of the χ2-privacy-utility function.

Lemma 12. For a given joint distribution PS,X, the χ2-privacy-utility function Fχ2(ϵ; PS,X) is a concave

function in ϵ. Furthermore, ϵ→ 1
ϵ Fχ2(ϵ; PS,X) is a non-increasing mapping.

Proof. See Appendix C.1.2.

The χ2-privacy-utility function has a simple upper bound,

Fχ2(ϵ; PS,X) ≤ ϵ + |X | − 1− χ2(S; X), (5.5)

which follows immediately from the data-processing inequality:

χ2(S; X) + χ2(X; Y) ≤ χ2(S; Y) + χ2(X; X). (5.6)

We derive an upper bound for the χ2-privacy-utility function that significantly improves (5.5) by

using properties of the PICs. The bound is piecewise linear, where each piece has a slope given

in terms of a PIC of PS,X. Intuitively, this bound corresponds to the privacy mechanism PY|X that
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Figure 5.1: Piecewise linear upper bound and lower bound for the χ2-privacy-utility function when δ(PS,X), defined in
(2.16), is positive.

achieves the best PUT if PY|X was not constrained to be non-negative. We also provide a lower

bound that follows directly from the concavity of the χ2-privacy-utility function. These bounds are

illustrated in Fig. 5.1.

Definition 16. For ti ∈ [0, 1] (i ∈ [n]), 0 ≤ ϵ ≤ ∑i∈[n] ti, and n ≤ m, Gm
ϵ (t1, ..., tn) is defined as

Gm
ϵ (t1, ..., tn) ≜ max

{
m

∑
i=1

xi

∣∣∣ (x1, ..., xm) ∈ Dm
ϵ (t1, ..., tn)

}
,

where

Dm
ϵ (t1, ..., tn) ≜

{
(x1, ..., xm)

∣∣∣ n

∑
i=1

tixi ≤ ϵ, xi ∈ [0, 1], i ∈ [m]

}
.

For fixed m and ti (i ∈ [n]), Gm
ϵ (t1, ..., tn) is a piecewise linear function with respect to ϵ and can

be expressed in closed-form (cf. Appendix C.1.3).

Theorem 7. For the χ2-privacy-utility function Fχ2(ϵ; PS,X) introduced in Definition 15 and ϵ ∈ [0, χ2(S; X)],

|X | − 1
χ2(S; X)

ϵ ≤ Fχ2(ϵ; PS,X) ≤ G|X |−1
ϵ (λ1(S; X), ..., λd(S; X)),

where d ≜ min{|S|, |X |} − 1 and λ1(S; X), ..., λd(S; X) are the PICs of PS,X .

Proof. See Appendix C.1.3.

Remark 7. The upper bound for the χ2-privacy-utility function given in Theorem 7 can also be
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proved by, for example, combining Theorem 4 in [280] with properties of the PICs.

We now illustrate the piecewise linear upper bound. Recall that the PIC decomposition of PS,X

results in a set of basis functions P ≜ { f1(S), · · · , fd(S)}, with corresponding MMSE estimators

U ≜ {g1(X), · · · , gd(X)}. Consider the following intuition for designing a sequence of privacy

mechanisms. The first mechanism enables the function gd(X) to be reliably estimated from Y while

keeping all other functions in U secret. In this case, the utility is one, since exactly one zero-mean,

unit-variance function of X can be recovered from Y. The privacy leakage is λd(S; X), since using

gd(X) to estimate the private function fd(S) has mean-squared error 1− λd(S; X). Following the

same procedure, the second privacy mechanism allows only gd(X) and gd−1(X) to be recovered

from the disclosed variable and so on. This sequence of privacy mechanisms corresponds to the

breakpoints of the upper bound. Note that such privacy mechanisms may not be feasible — hence

the upper bound.

Note that Fχ2(0; PS,X) characterizes the maximal aggregate MMSE of estimating useful functions

while guaranteeing perfect privacy. Here perfect privacy means that no zero-mean, unit-variance

function of S can be reconstructed from Y. If the value of Fχ2(0; PS,X) is known, a better lower bound

can be obtained from the concavity of Fχ2(ϵ; PS,X) as

|X | − 1− Fχ2(0; PS,X)

χ2(S; X)
ϵ + Fχ2(0; PS,X) ≤ Fχ2(ϵ; PS,X). (5.7)

When S = X, then χ2(S; X) = |X | − 1 and Fχ2(ϵ; PS,X) = ϵ. Following from Definition 16 and

noticing that all PICs of PS,X are 1, the upper bound and the lower bound for the χ2-privacy-utility

function in Theorem 7 are both ϵ, which is equal to Fχ2(ϵ; PS,X). In this sense, the upper bound and

lower bound given in Theorem 7 are sharp. We investigate the tightness of the upper bound through

numerical example in Section 5.7.1.

The following corollary of Lemma 12 and Theorem 7 shows that the χ2-privacy-utility function is

strictly increasing with respect to ϵ.

Corollary 3. For a given joint distribution PS,X, the mapping ϵ → Fχ2(ϵ; PS,X) is strictly increasing for

ϵ ∈ [0, χ2(S; X)].

Proof. See Appendix C.1.4.
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We denote

∂D(ϵ; PS,X) ≜ {PY|X | S→ X → Y, χ2(S; Y) = ϵ}.

By Corollary 3, Fχ2(ϵ; PS,X) is strictly increasing. Therefore,

Fχ2(ϵ; PS,X) = max
PY|X∈∂D(ϵ;PS,X)

χ2(X; Y). (5.8)

By Corollary 7 in [53], when δ(PS,X) = 0, defined in (2.16), then Fχ2(0; PS,X) > 0 (i.e., there exists

a privacy mechanism that allows the disclosure of a non-trivial amount of useful functions while

guaranteeing perfect privacy). On the other hand, when δ(PS,X) > 0, then Fχ2(0; PS,X) = 0. The

following theorem shows that when δ(PS,X) > 0, the upper bound of Fχ2(ϵ; PS,X) in Theorem 7 is

achievable around zero, implying that the upper bound is tight around zero. The proof of this

theorem also provides a specific way to construct an optimal privacy mechanism (i.e., achieves the

upper bound in Theorem 7).

Theorem 8. Suppose δ(PS,X) > 0 and PX min > 0. Then there exists Y such that S→ X → Y, χ2(X; Y) =

PX min and χ2(S; Y) = PX minλmin(S; X).

Proof. See Appendix C.1.5.

When δ(PS,X) > 0 and PX min > 0, then Fχ2(ϵ̂; PS,X) = PX min where ϵ̂ = PX minλmin(S; X). Since

(ϵ̂, PX min) is a point on the upper bound of the χ2-privacy-utility function given in Theorem 7,

Theorem 8 shows that, in this case, the upper bound is achievable in the high-privacy region. We

remark that the local behavior of privacy-utility functions in high-privacy region and high-utility

region has been studied in the context of strong data processing inequalities (e.g., [54, 189] and the

references therein).

Connections with Maximal Correlation

Maximal correlation has previously been considered as a privacy measure in [16, 17, 55, 174]. In

particular, it has been proved [55] that when ρm(S; Y) is small, then Pr(S ̸= Ŝ) can be lower bounded

for any Ŝ = h(Y). We show in Corollary 4 that, in the high privacy regime, the privacy-utility

function under maximal correlation possesses similar properties to Fχ2(ϵ; PS,X). However, when

ρm(S; Y) is large, say ρm(S; Y) = 1, it is unclear whether one private function or several private

functions can be recovered from the disclosed variable. In contrast, χ2-information can distinguish
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between these two cases and quantifies how many private functions, on average, can be reconstructed

from the disclosed variable. For example, a user might be comfortable revealing that his/her age

is above a certain threshold, but not the age itself. In this case, the privacy leakage measured by

maximal correlation is one since there is a function of age which can be recovered from the disclosed

variable. Thus, maximal correlation cannot distinguish between the cases where only one function

of S and S itself can be estimated from the disclosed data. We will revisit this example in the

next section and show how to design privacy mechanisms using PICs which target specific private

functions and useful functions. Finally, we provide an example showing the limitation of maximal

correlation as a utility measure.

Definition 17. For a given joint distribution PS,X and 0 ≤ ϵ ≤ ρm(S; X), we define the maximal-

correlation-privacy-utility (trade-off) function as

Fρm(ϵ; PS,X) ≜ sup
PY|X∈Dρm (ϵ;PS,X)

ρm(X; Y),

where Dρm(ϵ; PS,X) ≜ {PY|X | S→ X → Y, ρm(S; Y) ≤ ϵ}.

The next corollary follows from the same proof techniques used in Theorem 7 and Theorem 8.

Corollary 4. For a given joint distribution PS,X and ϵ ∈ [0, ρm(S; X)], if δ(PS,X) > 0, then Fρm(ϵ; PS,X) ≤
ϵ/
√

λmin(S; X). Furthermore, if PX min > 0, then there exists Y such that S → X → Y, ρm(X; Y) =
√

PX min and ρm(S; Y) =
√

PX minλmin(S; X).

We illustrate the limitation of the maximal correlation as a utility measure through the following

example.

Example 3. Let S = {−1, 1}n and X = {−1, 1}n, and Xn be the result of passing Sn through a

memoryless binary symmetric channel with crossover probability ϵ < 1/2. We assume that Sn

is composed of n uniform and i.i.d. bits. For A ⊆ [n], let Y = ∏i∈A Xi. In this case, one can

show that ρm(Sn; Y) = (1− 2ϵ)|A| and ρm(Xn; Y) = 1. If |A| is an increasing function of n, then

ρm(Sn; Y) → 0 as n → ∞. In other words, we can disclose a function of Xn achieving nearly

perfect privacy and utility as measured by ρm(Sn; Y) and ρm(Xn; Y), respectively, with large |A|
and n. However, as n increases, the basis of functions in L2(PXn) will increase exponentially, and

revealing only one function may not be enough for achieving utility. The crux of the limitation is that

maximal correlation only takes into account the most reliably estimated function. The χ2-information
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overcomes this limitation by capturing all possible real-valued functions of Xn that can be recovered

from Y. In particular, if χ2(Xn; Y) = |X | − 1, then all zero-mean finite-variance functions of Xn can

be reconstructed from Y. We will revisit this example again in Section 5.6 and Section 5.7.

5.5 Composite PUTs:

A Convex Program for Computing Privacy Mechanisms

In the previous section, we studied χ2-based metrics for both privacy and utility. The optimization

problem in the definition of χ2-privacy-utility function (Definition 15) is non-convex. Next, we

provide a convex program for designing privacy mechanisms by adding more stringent constraints

on privacy and utility.

More specifically, we explore an alternative, finer-grained approach for measuring both privacy

and utility based on PICs (recall that χ2-information is the sum of all PICs). This approach has

a practical motivation, since oftentimes there are specific well-defined features (functions) of the

data (realizations of a random variable) that should be hidden or disclosed. For example, a user

may be willing to disclose that they prefer documentaries over action movies, but not exactly which

documentary they like. More abstractly, we consider the case where certain known functions should

be disclosed (utility), whereas others should be hidden (privacy). This is a finer-grained setting than

the one used in the last section, since χ2-information captures the aggregate reconstruction error

across all zero-mean, unit-variance functions.

We denote the set of functions to be disclosed as

U (X) ≜ {ui : X → R | E [ui(X)] = 0, ||ui(X)||2 = 1, i ∈ [n]},

and the set of functions to be hidden as

P(S) ≜ {si : S → R | E [si(S)] = 0, ||si(S)||2 = 1, i ∈ [m]}.

Our goal is to find the privacy mechanism PY|X such that S→ X → Y and Y satisfies the following

privacy-utility constraints:

1. Utility constraints: max{mmse(ui(X)|Y)}i∈[n] ≤ ∆ and X ∼ Y.

2. Privacy constraints: mmse(si(S)|Y) ≥ θi, i ∈ [m].
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Note that the utility constraint X ∼ Y implies that the disclosed variable follows the same distribution

as the useful variable. The practical motivation for adding this constraint is to enable Y to preserve

overall population statistics about X, while hiding information about individual samples. This

assumption also enables the problem of finding the optimal privacy mechanism to be formulated as

a convex program, described next.

We follow two steps – projection1 and optimization – to find the privacy mechanism. Private

functions are projected to a new set of functions based on the useful variable in the first step. Then a

PIC-based convex program is proposed in order to find the privacy mechanism.

5.5.1 Projection

As a first step, we project (i.e., compute the conditional expectation) all private functions to the

useful variable and obtain a new set of functions:

P(X) ≜
{

ŝi(x) ≜
E [si(S)|X = x]
||E [si(S)|X] ||2

∣∣∣ i ∈ [m]

}
.

It is worth noting that, after the projection, the obtained privacy mechanism may not be an optimal

solution to the original problem since the privacy constraints become stricter (see Lemma 13).

Nonetheless, the advantage of this projection is twofold. First, it can significantly simplify the

optimization program, since after the projection all functions are cast in terms of the useful variable

alone. Second, the private variable is not needed as an input to the optimization after the projection.

Therefore, the party that solves the optimization does not need access to the private data directly,

further guaranteeing the safety of the sensitive information. The following lemma proves that privacy

guarantees cast in terms of the projected functions still hold for the original functions.

Lemma 13. Assume S→ X → Y. For any function f : S → R, if E [ f (S)] = 0 and ||E [ f (S)|X] ||2 ̸= 0,

we have E [E [ f (S)|X]] = 0 and

mmse

(
f (S)
|| f (S)||2

∣∣∣∣∣Y
)
≥ mmse

(
E [ f (S)|X]

||E [ f (S)|X] ||2

∣∣∣∣∣Y
)

.

Proof. See Appendix C.2.1.

By Lemma 13, mmse(si(S)|Y) ≥ mmse(ŝi(X)|Y). Therefore, if the new set of functions satisfies

the privacy constraints (i.e., mmse(ŝi(X)|Y) ≥ θi), the original set of functions also satisfies the

1We call this step as projection because of the geometric interpretation of conditional expectation (see, e.g., [82]).
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privacy constraints (i.e., mmse(si(S)|Y) ≥ θi).

5.5.2 Optimization

We introduce next a PIC-based convex program to find the privacy mechanism PY|X. First, we

construct a matrix F given by (f0, f1, ..., f|X |−1) such that

FTDXF = I, (5.9)

span({f0, ..., fn′}) = span({f0, u1, ..., un}), (5.10)

where f0 ≜ (1, ..., 1)T , fi ≜ ( fi(1), ..., fi(|X |))T , ui ≜ (ui(1), ..., ui(|X |))T , and

n′ ≜ dim(span({f0, u1, ..., un}))− 1.

Following from (5.9), { fk(x) | k = 0, ..., |X | − 1} is a basis of L2(PX) and, consequently, the

functions ŝi(x) can be decomposed as

ŝi(x) =
|X |−1

∑
k=0

αi,k fk(x). (5.11)

Since E [ŝi(X)] = 0, then αi,0 = 0. Similarly, since ui ∈ span({f0, ..., fn′}) and E [ui(X)] = 0, we have

ui(x) =
n′

∑
k=1

βi,k fk(x). (5.12)

If PX,Y = DXFΣΣΣFTDX with ΣΣΣ = diag(1, σ1, ..., σ|X |−1) is a feasible joint distribution matrix (i.e.,

non-negative entries and all entries add to 1), then, following from Theorem 1,

mmse(ŝi(X)|Y) = 1−
|X |−1

∑
k=1

α2
i,kσ2

k ,

mmse(ui(X)|Y) =
n′

∑
k=1

β2
i,k(1− λk(X; Y)) ≤ 1− min

k∈[n′ ]
λk(X; Y) = 1−

(
min
k∈[n′ ]

σk

)2
.

Therefore, the design of the privacy mechanism PY|X with privacy-utility constraints is equivalent to

solving the PIC-based convex program in Formulation 5.5.2. In this case, the objective function is

chosen as obj(σ1, ..., σn′) = min{σ1, ..., σn′}2.

2This is a convex program since one can add a constraint σi ≥ σ (i ∈ [n′]) and maximize σ.
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max obj(σ1, ..., σn′) (5.13)

s.t.
|X |−1

∑
k=1

α2
i,kσ2

k ≤ 1− θi (i = 1, ..., m), (5.14)

0 ≤ σi ≤ 1 (i = 1, ..., |X | − 1), (5.15)

ΣΣΣ = diag(1, σ1, ..., σ|X |−1), (5.16)

PX,Y = DXFΣΣΣFTDX , (5.17)

PX,Y has non-negative entries. (5.18)

Formulation 5.5.2: PIC-based convex program. Here σi (i = 1, ..., |X | − 1) and θi (i = 1, ..., m) are

variables and privacy parameters, respectively.

The objective function min{σ1, ..., σn′} maximizes the worst-case utility over all useful functions.

On the other hand, we can choose the objective function to be a weighted sum ∑n′
i=1 aiσi. Although

maximizing the weighted sum is not equivalent to the desired utility constraints, this new formulation

allows more flexibility in the optimization. In particular, this enables useful functions which do not

highly correlate with private functions to achieve better utility, in terms of mean-squared error, under

the same privacy constraints. Furthermore, the weights can be used to prioritize the reconstruction

of certain useful functions.

The previous convex programs can be numerically solved by standard methods (e.g., CVXPY

[75]). Note that when all useful functions and private functions are based on the same random

variable, we can use optimization without projection. We defer the numerical results to Section 5.7,

where we derive privacy mechanisms for a synthetic dataset and a real-world dataset using tools

introduced in this section.

5.6 Lower Bounds for MMSE with Restricted Knowledge of the

Data Distribution

So far we have assumed the information-theoretic setting where the probability distribution PS,X is

known to the privacy mechanism designer beforehand. In this section, we forgo this assumption

and consider a setting where S = ϕ(X) and the correlation between ϕ(X) and a set of functions
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(composed with the data) {ϕj(X)}m
j=1 is given. We derive lower bounds for the MMSE of estimating

ϕ(X) given Y in terms of the MMSE of estimating ϕj(X) given Y. In privacy systems, X may be

a user’s data and Y a distorted version of X generated by a privacy mechanism PY|X. The set

{ϕj(X)}m
j=1 could then represent a set of functions that are known to be hard to infer from Y due

to inherent privacy constraints of the setup. For example, when the privacy mechanism PY|X is

designed by the PIC-based convex programs in Formulations 5.5.2 and {ϕj(X)}m
j=1 is the set of

private functions, mmse
(
ϕj(X)|Y

)
is lower bounded due to the privacy constraints.

The following lemma will be used to derive the lower bounds for the MMSE of ϕ(X) given Y.

Lemma 14. Let Ln : (0, ∞)n × [0, 1]n → R be given by

Ln(a, b) ≜ max
{

aTy | y ∈ Rn, ∥y∥2 ≤ 1, y ≤ b
}

. (5.19)

Let π be a permutation of [n] such that bπ(1)/aπ(1) ≤ · · · ≤ bπ(n)/aπ(n). If bπ(1)/aπ(1) ≥ 1, Ln(a, b) =

∥a∥2. Otherwise,

Ln(a, b) =
k∗

∑
i=1

aπ(i)bπ(i) +

√√√√(∥a∥2
2 −

k∗

∑
i=1

a2
π(i)

)(
1−

k∗

∑
i=1

b2
π(i)

)

where

k∗ ≜ max

k ∈ [n]
∣∣∣ bπ(k)

aπ(k)
≤

√√√√√
(

1−∑k−1
i=1 b2

π(i)

)+
∥a∥2

2 −∑k−1
i=1 a2

π(i)

 . (5.20)

Proof. See Appendix C.3.1.

Throughout this section we assume ∥ϕi(X)∥2 = 1 (i ∈ [m]) and E
[
ϕi(X)ϕj(X)

]
= 0 (i ̸= j). For a

given ϕi, the inequality

max
ψ∈L2(PY)

E [ϕi(X)ψ(Y)] = ∥E [ϕi(X)|Y] ∥2 ≤ νi (5.21)

is satisfied, where 0 ≤ νi ≤ 1. This is equivalent to mmse(ϕi(X)|Y) ≥ 1− ν2
i .

Theorem 9. Let ∥ϕ(X)∥2 = 1 and E [ϕ(X)ϕi(X)] = ρi > 0. Denoting ρ ≜ (|ρ1|, . . . , |ρm|), ννν ≜

(ν1, . . . , νm), ρ0 ≜
√

1−∑m
i=1 ρ2

i , ρ0 ≜ (ρ0, ρ) and ννν0 ≜ (1, ννν), then

∥E [ϕ(X)|Y] ∥2 ≤ Bm(ρ0, ννν0), (5.22)
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where

Bm(ρ0, ννν0) ≜


Lm+1 (ρ0, ννν0) if ρ0 > 0,

Lm(ρ, ννν) otherwise,
(5.23)

and Ln is given in (5.19). Consequently,

mmse(ϕ(X)|Y) ≥ 1− Bm(ρ0, ννν0)
2. (5.24)

Proof. See Appendix C.3.2.

Denote ψi(Y) ≜ (TX|Yϕi)(Y)/∥(TX|Yϕi)(Y)∥2 (i ∈ [m]) and ϕ0(X) ≜ ρ−1
0 (ϕ(X)−∑m

i=1 ρiϕi(X)) if

ρ0 > 0, otherwise ϕ0(X) ≜ 0. The previous bounds, (5.22) and (5.24), can be further improved when

E
[
ψi(Y)ϕj(X)

]
= 0 for i ̸= j, j ∈ {0, . . . , m}.

Theorem 10. Let ∥ϕ(X)∥2 = 1 and |E [ϕ(X)ϕi(X)] | = ρi > 0 for i ∈ [m]. In addition, assume

E
[
ψi(Y)ϕj(X)

]
= 0 for i ̸= j, i ∈ [t] and j ∈ {0, . . . , m}, where 0 ≤ t ≤ m. Then

∥E [ϕ(X)|Y] ∥2 ≤

√√√√ t

∑
k=1

ν2
i ρ2

i + Bm−t (ρ̃, ν̃νν)2, (5.25)

where ρ̃ = (ρ0, ρt+1, . . . , ρm), ν̃νν = (1, νt+1, . . . , νm), and Bm is defined in (5.23) (considering B0 = 0). In

particular, if t = m,

∥E [ϕ(X)|Y] ∥2 ≤
√

ρ2
0 +

m

∑
k=1

ν2
i ρ2

i , (5.26)

and (5.26) is an equality when ρ0 = 0. Furthermore,

mmse(ϕ(X)|Y) ≥ 1−
t

∑
k=1

ν2
i ρ2

i − Bm−t (ρ̃, ν̃νν)2 . (5.27)

Proof. See Appendix C.3.3.

In what follows, we use three examples to illustrate different use cases of Theorem 9 and 10.

Example 4 illustrates how Theorem 10 can be applied to the q-ary symmetric channel which could

be perceived as a model of randomized response [147, 291], and demonstrates that bound (5.26) is

sharp. Example 5 illustrates Theorem 10 for the binary symmetric channel. Here the useful variable

is composed by n uniform and independent bits. In this case, the basis can be expressed as the

parity bits of the input to the channel. Finally, Example 6 illustrates Theorem 9 for one-bit functions.

The same method used in the proof of Theorem 9 is applied to bound the probability of correctly

guessing a one-bit function from an observation of the disclosed data.
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Example 4 (q-ary symmetric channel). Let X = Y = [q], and Y be the result of passing X through

an (ϵ, q)-ary symmetric channel, which is defined by the transition probability

PY|X(y|x) = (1− ϵ)Iy=x + ϵ/q for all x ∈ X , y ∈ Y . (5.28)

We assume that X has a uniform distribution, which implies Y also has a uniform distribution. Any

function ϕ ∈ L2(PX) such that E [ϕ(X)] = 0 and ∥ϕ(X)∥2 = 1 satisfies

ψ(Y) = (TX|Yϕ)(Y) = (1− ϵ)ϕ(Y),

and, consequently, ∥(TX|Yϕ)(Y)∥2 = (1− ϵ). We will use this fact to show that the bound (5.26) is

sharp in this case.

Observe that for ϕi, ϕj ∈ L2(PX), if E
[
ϕi(X)ϕj(X)

]
= 0 then E

[
ψi(Y)ψj(Y)

]
= 0. Now let

ϕ ∈ L2(PX) satisfy E [ϕ(X)] = 0 and ∥ϕ(X)∥2 = 1, and let E [ϕ(X)ϕi(X)] = ρi for i ∈ [m], where

{ϕi} satisfies the conditions in Theorem 10 and ∑m
i=1 ρ2

i = 1. In addition, ∥ψi(Y)∥2 = (1− ϵ) = νi.

Then, from (5.26) and noting that ρ0 = 0, t = m, we have

∥(TX|Yϕ)(Y)∥2 ≤
√

m

∑
i=1

ν2
i ρ2

i = (1− ϵ)

√
m

∑
i=1

ρ2
i = 1− ϵ,

which matches ∥(TX|Yϕ)(Y)∥2, and the bound is tight in this case.

Example 5 (Binary channels with additive noise). Let X = {−1, 1}n and Y = {−1, 1}n, and Yn be

the result of passing Xn through a memoryless binary symmetric channel with crossover probability

ϵ < 1/2. We assume that Xn is composed by n uniform and i.i.d. bits. For S ⊆ [n], let

χS (Xn) ≜∏
i∈S

Xi.

Any function ϕ : X → R can then be decomposed in terms of the basis χS (Xn) as [208]

ϕ(Xn) = ∑
S⊆[n]

cSχS (Xn),

where cS = E [ϕ(Xn)χS (Xn)]. Furthermore, since E [χS (Xn)|Yn] = (1− 2ϵ)|S|χS (Yn), it follows

from Theorem 10 that

mmse(ϕ(Xn)|Yn) = 1− ∑
S⊆[n]

c2
S (1− 2ϵ)2|S|. (5.29)

This result can be generalized for the case Xn = Yn ⊗ Zn, where the operation ⊗ denotes bit-wise
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multiplication, Zn is drawn from {−1, 1}n and Xn is uniformly distributed. In this case

mmse(ϕ(Xn)|Yn) = 1− ∑
S⊆[n]

c2
SE [χS (Zn)]2 . (5.30)

Example 6 (One-Bit Functions). Let X be a hidden random variable with support X , and let Y be a

noisy observation of X. We denote by B1, . . . , Bm a collection of m predicates of X, where Bi = ϕi(X),

ϕi : X → {−1, 1} for i ∈ [m] and, without loss of generality, E [Bi] = bi ≥ 0.

We denote by B̂i an estimate of Bi given an observation of Y, where Bi → X → Y → B̂i. We

assume that for any B̂i ∣∣E[Bi B̂i]
∣∣ ≤ 1− 2αi

for some 0 ≤ αi ≤ (1− bi)/2 ≤ 1/2. This condition is equivalent to imposing that Pr(Bi ̸= B̂i) ≥ αi,

since

E
[
Bi B̂i

]
= Pr(Bi = B̂i)− Pr(Bi ̸= B̂i)

= 1− 2 Pr(Bi ̸= B̂i).

In particular, this captures the “hardness” of guessing Bi based solely on an observation of Y.

Now assume there is a bit B such that E [BBi] = ρi for i ∈ [m] and E
[
BiBj

]
= 0 for i ̸= j. We can

apply the same method used in the proof of Theorem 9 to bound the probability of B being guessed

correctly from an observation of Y:

Pr(B ̸= B̂) ≥ 1
2
(1− Bm(ρ, ννν)) , (5.31)

where νi = 1− 2αi.

5.7 Numerical Experiments

We illustrate some of the results derived in this chapter through two numerical experiments. The

first experiment, conducted on a synthetic dataset, verifies the tightness of the upper bound for the

χ2-privacy-utility function. The second experiment, run on a real-world dataset, demonstrates the

performance of the optimization methods proposed in Section 5.5.
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Figure 5.2: We depict the bounds of the χ2-privacy-utility function (see Theorem 7) and the privacy-utility values of the
privacy mechanisms designed by the optimization methods in Section 5.5.

5.7.1 Parity Bits

We choose private variable S = (S1, S2) ∈ {−1, 1}2, where S is composed by two independent bits

with Pr(S1 = 1) = 0.45 and Pr(S2 = 1) = 0.4. The useful variable X = (X1, X2) ∈ {−1, 1}2 is

generated by passing S1 and S2 through BSC(0.2) and BSC(0.15), respectively.

We use the optimization methods proposed in Section 5.5 to design privacy mechanisms. The

private and useful functions are selected as s1(S) = S1 and u1(X) = X1X2, u2(X) = X2, respectively.

We first project the private function to the useful variable. Then we apply Formulation 5.5.2 with

obj(σ1, ..., σn′) = ∑n′
i=1 σi to find the privacy mechanisms.

In Fig. 5.2, we depict the privacy and utility, measured by χ2-information, of the privacy

mechanisms. We also draw the upper bound and lower bound of the χ2-privacy-utility function. As

shown, the privacy-utility values of the designed mechanisms are very close to the upper bound.

In particular, since the χ2-privacy-utility function is a concave function (see Lemma 12), the curve

of this function is between its upper bound (red line) and the linear interpolation of the achievable

privacy-utility values (dashed line).

5.7.2 UCI Adult Dataset

We apply our formulations to the UCI Adult Dataset [181]. A natural selection for the private and

useful variables are S = (Gender, Race) and X = (Education Years, Income), respectively. This allows us

to interpret the results of our formulations in an intuitive way, as one would expect there to exist

correlations between the chosen private and useful variables. Private functions and useful functions
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Figure 5.3: MMSE of estimating each function given the disclosed variable, where darker means harder to estimate.
Here (Education Years, Income) and (Gender, Race) are useful variable and private variable, respectively. The privacy
parameters θi are selected as the same for all i and increase from 0 to 1 (i.e., the privacy constraints are increasing from the
top down). The privacy mechanisms are designed by Formulation 5.5.2 with obj(σ1, ..., σn′ ) = min{σ1, ..., σn′} (left) and
with obj(σ1, ..., σn′ ) = ∑n′

i=1 σi (right), respectively.

are represented by indicator functions. Furthermore, functions which are linear combinations of

others are removed. Following the same procedure proposed in Section 5.5, we first project all private

functions to the useful variable. We use QR decomposition [271] to construct the basis { fk(x)}. Note

that other decomposition methods can also be used for constructing basis and, in fact, different bases

affect the behavior of the PIC-based convex program (e.g., the joint distribution matrix PX,Y returned

by the optimization may be different). Consequently, the solution produced from the optimization

program may not be optimal. Finally, Formulation 5.5.2 is used to compute the privacy mechanisms.

In Fig. 5.3, we show the MMSE of estimating useful functions and private functions given the

disclosed variable. As shown, when we use Formulation 5.5.2 with obj(σ1, ..., σn′) = min{σ1, ..., σn′}
to compute privacy mechanisms, the estimation errors behave uniformly among all functions. This

is because we aim at maximizing the worst-case utility over all useful functions. On the other hand,

the privacy mechanisms designed by Formulation 5.5.2 with obj(σ1, ..., σn′) = ∑n′
i=1 σi reveal more

interpretable relationships between the private functions and useful functions. We see that Income,

Gender, and Race are highly correlated, and it is not possible to reveal Income while maintaining privacy
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for Gender and Race. Of particular interest are the subtle correlations between the three aforementioned

functions and Education Years. There is a marked correlation between Education Years < 6 and, to a lesser

degree, Education Years > 12, with Gender and Race. This may be due to the fact that most members

of the dataset do not end their education midway. That is, most individuals will either never have

begun schooling in the first place or will not continue their education after the 12-year benchmark,

which marks graduation from high school. Therefore, we observe that the relationship between

Education Years and Race is manifested the most in the two extremities of Education Years (> 12 and < 6).

Also of note is the correlation between the private functions and Education Years : 8. Though not as

obvious, this relationship can, too, be explained by the fact that 8 years of education marks another

benchmark: the beginning of high school, also a time when people are prone to terminating their

education.

5.8 Conclusion

In this chapter, we studied a fundamental PUT in data disclosure, where an analyst is allowed to

reconstruct certain functions of the data, while other private functions should not be estimated

with distortion below a certain threshold. First, χ2-information was used to measure both privacy

and utility. Bounds on the best PUT were provided and the upper bound, in particular, was

shown to be achievable in the high-privacy region. Moreover, a PIC-based convex program was

proposed to design privacy-assuring mechanisms when the useful functions and private functions

were known beforehand. We also derived lower bounds on the MMSE of estimating a target

function from the disclosed data. Our hope is that the methods presented here can inspire new,

information-theoretically grounded and interpretable privacy mechanisms.
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Chapter 6

Robustness of Privacy Measures and

Mechanisms

A common approach to ensure privacy in data disclosure is to process the dataset through a privacy

mechanism that seeks to fulfill certain privacy and utility guarantees. Information theoretic methods

for designing privacy mechanisms often rely on the implicit assumption that the data distribution is,

for the most part, known [e.g., 17, 29, 51, 52, 198, 209, 227, 228, 240, 281, 290]. However, in practice,

the data distribution can only be accessed through a limited number of observed samples.

In this chapter, we consider the following setup. We assume that data has both private and

non-private features and, based on a sample of such pairs, the designer creates a randomized

mapping called a privacy mechanism. As new samples arrive, the designed mechanism is applied to

the non-private features in order to produce a sanitized version of them which is later disclosed. In

this context, we assume that the adversary (data analyst) knows the true distribution of the data,

the privacy mechanism being used, and the disclosed data set. The adversary’s objective is then to

illegitimately infer the private features associated to the disclosed data. We illustrate this procedure

in Figure 6.1. Observe that this adversary is the strongest in terms of statistical knowledge and

hence serves as a worst case benchmark. Apart from its statistical knowledge, we assume that the

adversary has no side information regarding the disclosed data.

Since privacy mechanisms are designed using a sample, their privacy-utility guarantees might

not generalize to the true distribution, thereby creating a privacy threat as the de facto guarantees
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Figure 6.1: Typical setting for the design and deployment of privacy mechanisms.

might be considerably different from those in the design phase. In this chapter, we study the effect of

the discrepancy between the empirical and true distributions on the analysis and design of privacy

mechanisms.

First, we consider the setting where the privacy mechanism is designed using an estimate of the

data distribution to evaluate the privacy-utility guarantees. We derive bounds for the discrepancy

between the privacy-utility guarantees for the empirical distribution (type) and the true (unknown)

data distribution. In this context, these bounds can be used to asses the de facto guarantees of privacy

mechanisms when deployed in practice.

Next, we investigate the statistical consistency of the optimal privacy mechanisms. Assume that the

privacy mechanism designer constructs an optimal privacy mechanism for the empirical distribution.

As the number of samples increases, the optimal privacy mechanism designed for the empirical

distribution naturally changes. We show that if such a sequence of privacy mechanisms converges,

its limit is an optimal privacy mechanism for the true data distribution.

Finally, we introduce the notion of uniform privacy mechanism. When privacy is a priority,

the privacy mechanism designer may be required to guarantee a specific level of privacy for the

true distribution despite having access only to an estimate of it. Motivated by this setting, we

consider privacy mechanisms that, by design, assure privacy for every distribution within a specific

neighborhood of the empirical distribution. In this case, large deviations results imply that privacy

is guaranteed for the true distribution with a certain probability (depending on the neighborhood).

Since privacy is guaranteed uniformly on a neighborhood of the empirical distribution, we name

these privacy mechanisms as uniform privacy mechanisms.
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6.1 Overview and Main Contributions

In Section 6.4, we provide probabilistic upper bounds for the difference between the privacy-

utility guarantees for the empirical and the true distributions under five different information

metrics: probability of correctly guessing, f -information with f locally Lipschitz, Arimoto’s mutual

information (α-leakage) of order α > 1, Sibson’s mutual information of order α > 1, and maximal

α-leakage of order α > 1. These bounds, which scale as O(1/
√

n) with n being the sample size, hold

uniformly across all privacy mechanisms and, hence, can be used even for privacy mechanisms that

do not have explicit descriptions, e.g., the privacy mechanisms implemented using neural networks

in [126]. Explicit constants depending on the information metrics under consideration are provided.

The proofs of these bounds rely on known large deviations results [292] and Lipschitz continuity

properties of information leakage measures established in this chapter. These continuity properties

can be combined with results for other estimation frameworks different from the large deviations one,

e.g., the ℓ1-minimax setting in [150] and references therein. In those cases, the role of the empirical

estimator is naturally replaced by other estimators, e.g., the add-constant estimator in [150].

We study the convergence properties of optimal privacy mechanisms in Section 6.5. Specifically,

we consider the case when a privacy mechanism designer constructs a sequence optimal privacy

mechanisms for a sequence of joint distributions converging to the true distribution. In this context,

we show that while the sequence of optimal privacy mechanisms do not necessarily form a Cauchy

sequence, the distance between the privacy mechanisms in the sequence and the set of optimal

privacy mechanisms with respect to the true distribution does go to zero. This convergence is

analyzed for information measures which satisfy three technical conditions outlined in Section 6.5.

These conditions are satisfied by probability of correctly guessing, f -information with f locally

Lipschitz, and Arimoto’s mutual information (α-leakage) of order α > 1. As a by-product, we prove

that, under these conditions, the privacy-utility function as a function of the joint distribution is

continuous except possibly at the boundary of its domain.

In Section 6.6, we introduce the notion of uniform privacy mechanism and prove the existence of

optimal uniform privacy mechanisms, i.e., uniform privacy mechanisms that attain the best utility in a

max-min sense. Optimal uniform privacy mechanisms are considerably harder to design than their

non-uniform counterparts as privacy has to be guaranteed for any distribution within a neighborhood

of the empirical distribution. Nonetheless, we show that they can be approximated by certain

mechanisms designed to deliver privacy only for the empirical distribution. This approximation
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result circumvents the highly non-trivial task of designing optimal uniform privacy mechanisms.

6.2 Related Works

Differential privacy is a popular measure of privacy which aims at answering queries while simulta-

neously ensuring privacy of individual records in the database [87]. It does not take into account

the distribution of the entire dataset which results in its robustness with respect to the dataset

distribution, a property that is not satisfied a priori by information-theoretic privacy mechanisms. In

this chapter, we analyze the degree of robustness to variations of the dataset distribution of certain

information-theoretic measures of privacy.

The study of privacy from an information-theoretic point of view heavily depends on the

chosen information metric. One commonly-used information leakage metric is Shannon’s mutual

information [247] and its generalizations [276]. In particular, both α-leakage and f -information — a

special case of Csiszár’s f -divergence [70] — have been used to formulate the privacy-utility trade-

offs problem, see e.g., Liao et al. [177]. These generalizations seek to study privacy using information

metrics that have appeared in the information theory literature and carry some operational (statistical)

meaning. There are also information measures which have been introduced specifically in the context

of privacy and information leakage. For example, Issa et al. [131, 133] introduced a metric called

maximal leakage to measure privacy leakage, later extended by Liao et al. [178] in a tunable measure

called α-leakage. Duchi et al. [81] presented locally differential privacy. We refer the reader to Wagner

and Eckhoff [279] for a survey of privacy metrics and remark that information metrics also shed

light on many secrecy problems, e.g., cryptosystems with short keys [174], side-channel attack [133],

and entropic security [79, 237].

Many methods to design information-theoretic privacy mechanisms have been proposed in

the past, see, e.g., [18, 51, 133, 179, 229, 240]. However, all these works assume that the designer

has full knowledge of the data distribution. In practice, the designer may only have access to n

i.i.d. samples, creating a mismatch between the distribution used to design the privacy mechanism

and the true one. We show that for every information leakage measure considered (see Theorem 11),

the discrepancy between the privacy-utility guarantees for the empirical and true distributions scales

as O(1/
√

n). It is important to remark that, in the context of the information bottleneck, Shamir et

al. [245] established similar upper bounds for mutual information that scale as O(log(n)/
√

n). Hence,
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mutual information appears to fall outside the scope of the techniques presented in this chapter.

A related problem is that of estimating information-theoretic measures from a limited number of

samples, as studied by, for example, Jiao et al. [140], Wu and Yang [298] and Issa et al. [133] in the

context of privacy. Our work differs from those as we do not focus on the construction of estimators

suited for a specific information leakage measure, instead we analyze the performance of the plug-in

estimator under different leakage measures. Given the ease of implementation of this estimator, we

believe our contributions might be of interest to practitioner.

The fundamental trade-offs between privacy guarantees and statistical utility in data disclosure

have been studied in several papers from an information-theoretic view. For example, Yamamoto

[303] developed the trade-off between rate, distortion, and equivocation for a specific source coding

model. Rebollo-Monedero et al. [229], Calmon and Fawaz [51], and Sankar et al. [240] character-

ized privacy-utility trade-offs using tools from rate-distortion theory. Varodayan and Khisti [274]

and Tan et al. [260] considered the privacy-energy efficiency trade-off in smart meter systems.

Makhdoumi et al. [187] showed the connection between the privacy funnel and the information

bottleneck proposed by Tishby et al. [263]. The privacy-utility function has been analyzed to find the

fundamental limits of privacy-utility trade-offs under different metrics, see, e.g., Calmon et al. [55]

and Asoodeh et al. [17]. It has been shown that this function exhibits some common properties across

different metrics. For example, it is continuous, concave, and strictly increasing with respect to the

privacy parameter, see also Wang and Calmon [281] and Asoodeh et al. [18].

The study of robustness has appeared in many different areas, such as optimization [34], statistics

[129], artificial intelligence [270], and machine learning [58]. The notion of robustness considered in

this chapter is closely related to generalization in machine learning [244], which aim at analyzing

different performances of the learner’s output between training and testing phases. More specifically,

a learner may output a classifier h which minimizes a given empirical risk over a sample S =

(z1, · · · , zm), namely,

LS(h) ≜
1
m

m

∑
i=1

ℓ(h, zi), (6.1)

where ℓ is a given loss function. Nonetheless, in practice, the same classifier h might exhibit a very

different true risk, defined as

L(h) ≜ E [ℓ(h, Z)] , (6.2)
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where Z is a random variable distributed according to the dataset distribution. The goal of general-

ization is to analyze the difference between the empirical risk and the true risk and derive bounds

for this discrepancy. This problem has been studied in computer science [154] and, recently, has been

analyzed using tools from information theory by Xu and Raginsky [300] and Russo and Zou [238].

Since most information-theoretic metrics do not seem to be expressible in terms of a loss function as

in (6.2), classical generalization results cannot be directly applied for analyzing the robustness of

information-theoretic privacy mechanisms. Recently, the robustness of privacy mechanisms has been

investigated using tools from information theory in the works of Wang and Calmon [281] and Issa et

al. [133]. It is important to mention that some techniques developed for privacy preservation, such

as differential privacy, can be useful to analyze generalization guarantees, as shown by Dwork et

al. [84].

6.3 Preliminaries and Problem Setup

In this section, we review preliminary material regarding information leakage measures and large

deviations bounds for distribution estimation. In addition, we formally introduce the problems

addressed in this chapter.

Notation. Given random variables U and U′ supported over a finite alphabet U and another

random variable V supported over a finite alphabet V , we let PU′ · PV|U be the joint distribution over

U × V determined by

(PU′ · PV|U)(u, v) = PU′(u)PV|U(v|u). (6.3)

Observe that with this notation, PU · PV|U = PU,V . Given another random variable Ṽ supported over

a finite alphabet Ṽ , we let PṼ|U PV|Ṽ be the transition probability matrix determined by

(PṼ|U PV|Ṽ)(v|u) = ∑
ṽ∈Ṽ

PṼ|U(ṽ|u)PV|Ṽ(v|ṽ). (6.4)

We let S and X be two random variables with discrete supports S and X , respectively. We let

P denote the joint distribution PS,X and P̂ be a generic estimate of P. The empirical distribution

obtained from n i.i.d. samples drawn from P is denoted by P̂n. We let (Pn)∞
n=1 be any sequence of

joint distributions converging to the joint distribution P. Any generic distribution over S × X is

denoted by Q. Also, any sequence of distributions over S × X is denoted by (Qn)∞
n=1.
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Category Notation Meaning

Norms
∥a∥α α-norm with α ∈ [1, ∞): (∑i |ai|α)1/α

∥a∥∞ ∞-norm: maxi |ai|

Joint Distributions

P True joint distribution: PS,X

P̂ Estimated distribution: P̂S,X

P̂n Empirical distribution obtained from n i.i.d. samples

(Pn)∞
n=1 Any sequence of joint distributions converging to P

Q Any joint distribution over S ×X
(Qn)∞

n=1 Any sequence of joint distributions over S × X

Channels W Any privacy mechanism (channel) from X to Y

Sets

W Set of all privacy mechanisms

WN Set of all privacy mechanisms from X to {1 . . . , N}
P Set of all joint distributions over S ×X
Q Any closed subset of P

Table 6.1: List of notation used in this chapter.

For convenience, we summarize some common notation in Table 6.1.

6.3.1 Information Leakage Measures.

Here we review the definition and some basic properties of information leakage measures which

are commonly used in the literature. An information leakage measure L(U → V) quantifies how

much information V leaks about U. Specifically, U and V can represent raw and disclosed datasets,

respectively, and, in this case, L(U → V) measures the utility of the disclosed dataset. On the other

hand, when U and V represent private information and information available to an adversary, then

L(U → V) quantifies the adversary’s ability of inferring U from the observation of V. In the privacy

literature it is valuable to relate information leakage measures with a specific loss/gain function

(implicitly) adopted by an adversary. In what follows, we review a range of information leakage

measures along with their operational meanings in terms of loss/gain functions.
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α-Leakage

In an effort to unify several information leakage measures within a single framework, Liao et

al. recently introduced an information leakage measure called α-leakage [178].

Definition 18 (Definition 4, [178]). Let U and V be two random variables supported over finite sets

U and V , respectively. For α ∈ (1, ∞), the α-leakage from U to V is defined as

Lα(U → V) ≜
α

α− 1
log

max
Û:U→V→Û

E
[
Pr(Û = U|U, V)

α−1
α

]
max

Û:U |= Û
E
[
Pr(Û = U|U)

α−1
α

] . (6.5)

The value of Lα(U → V) is extended by continuity to α = 1 and α = ∞.

In terms of the adversarial setting described at the beginning of this section, α-leakage with

α ∈ (1, ∞] can be interpreted as the multiplicative increase, upon observing V, of the expected

gain of an adversary. In order to make this observation precise, note that the expected value in the

denominator of the logarithmic term in (6.5) equals

E
[
Pr(Û = U|U)

α−1
α

]
= ∑

u∈U
PU(u)PÛ(u)

α−1
α . (6.6)

In particular, the RHS of (6.6) equals expected gain of PÛ w.r.t. the gain function

gain(u, PÛ) = PÛ(u)
α−1

α . (6.7)

Thus, the denominator of the logarithmic term in (6.5) is the largest expected gain of an adversary

with no additional information apart from the distribution of U. Also, the expected value in the

numerator of the logarithmic term in (6.5) equals

E
[
Pr(Û = U|U, V)

α−1
α

]
= ∑

u∈U
∑

v∈V
PU,V(u, v)PÛ|V(u|v)

α−1
α . (6.8)

Thus, the numerator of the logarithmic term in (6.5) is the largest expected gain of an adversary

that has access to V and the joint distribution of U and V. From these observations we conclude

that Lα(U → V) measures the multiplicative increase of the best expected gain upon observing

V. In a similar way, L1(U → V) can be interpreted as additive increase, upon observing V, of the

expectation of the gain function

gain(u, PÛ) = log PÛ(u). (6.9)

In addition to its operational definition, α-leakage can be related to Arimoto’s mutual information
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[12, 97] whose definition is provided below.

Definition 19. Let U and V be two random variables supported over finite sets U and V , respectively.

Their Arimoto’s mutual information of order α ∈ (1, ∞) is defined as

IA
α (PU,V) ≜

α

α− 1
log ∑v ∥PU,V(·, v)∥α

∥PU(·)∥α
. (6.10)

Also, by continuous extension,

IA
1 (PU,V) ≜ I(PU,V) and IA

∞(PU,V) ≜ log ∑v maxu PU,V(u, v)
maxu PU(u)

, (6.11)

where I(PU,V) denotes Shannon’s mutual, i.e., I(PU,V) ≜ ∑u∈U ∑v∈V PU,V(u, v) log
PU,V(u, v)

PU(u)PV(v)
.

In [178], Liao et al. proved that α-leakage is indeed equal to Arimoto’s mutual information of

order α.

Proposition 12 (Theorem 1, [178]). Let U and V be two random variables supported over finite sets U and

V , respectively. For α ∈ [1, ∞], α-leakage satisfies

Lα(U → V) = IA
α (PU,V). (6.12)

The previous proposition shows that α-leakage recovers Shannon’s mutual information in the

extremal case α = 1. It is important to point out that Shannon’s mutual information has been

extensively used in the context of privacy (see e.g., the works of Rebollo-Monedero et al. [229], Sankar

et al. [240], Calmon and Fawaz [51], and Asoodeh et al. [17]). On the other extreme, when α = ∞,

α-leakage is closely related to another information leakage measure: probability of correctly guessing.

This information leakage measure, whose definition is recalled next, has been used recently in the

context of privacy-utility trade-offs by Asoodeh et al. [18] and in the broader privacy literature by

Smith [250], Braun et al. [43], Barthe and Kopf [26], and references therein.

Definition 20. Let U and V be two random variables supported over finite sets U and V , respectively.

The probability of correctly guessing U and the probability of correctly guessing U given V are given

by

Pc(U) ≜ max
u∈U

PU(u), (6.13)

Pc(U|V) ≜ ∑
v∈V

max
u∈U

PU,V(u, v). (6.14)
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As its name suggests, Pc(U) is equal to the (largest) probability of correctly guessing U without

any side information but the distribution of U. Similarly, Pc(U|V) is equal to the (largest) probability

of correctly guessing U given V and the joint distribution PU,V . This interpretation can be made

precise using the adversarial setting and the gain function defined in (6.7) with α = ∞. Indeed, a

simple manipulation shows that

Pc(U) = max
Û:U |= Û

E
[
IU=Û

]
and Pc(U|V) = max

Û:U→V→Û
E
[
IU=Û

]
, (6.15)

which corresponds to the adversarial setting under the 0-1 loss. Observe that under this loss,

the optimal adversary strategy is the same as the maximum a posteriori (MAP) decoder in the

communication literature. Finally, observe that

L∞(U → V) = log
Pc(U|V)

Pc(U)
, (6.16)

evidencing the intrinsic relation between ∞-leakage and probability of correctly guessing.

Remark 8. Despite the close relation between ∞-leakage and probability of correctly guessing, we

always treat them separately. On the one hand, probability of correctly guessing is of interest in

its own right. On the other hand, the results for probability of correctly guessing are easier to

derive than their ∞-leakage counterparts. As a result, working explicitly with probability of correctly

guessing allows us to present the key techniques used in this chapter while keeping the technical

difficulties at a minimum.

In [133], Issa et al. introduced the notion of maximal leakage in order to quantify the adversary’s

capability to infer any (randomized) function of U from V. Motivated by this notion, Liao et

al. introduced maximal α-leakage, a tunable information leakage measure that is equal to maximal

leakage when α = ∞.

Definition 21 (Definition 5, [178]). Let U and V be two random variables supported over finite sets

U and V , respectively. For α ∈ [1, ∞], the maximal α-leakage from U to V is defined as

Lmax
α (U → V) ≜ sup

T:T→U→V
Lα(T → V), (6.17)

where T represents any (randomized) function of U that takes values on a finite but arbitrary

alphabet.

Arimoto’s mutual information can be regarded as a generalization of Shannon’s mutual infor-

108



mation, see, e.g., [276]. Another such generalization is Sibson’s mutual information [249] which, as

shown below, is also related to maximal α-leakage.

Definition 22 (Definition 4, [276]). Let U and V be two random variables supported over finite sets

U and V , respectively. Their Sibson’s mutual information of order α ∈ (1, ∞) is defined as

IS
α(PU,V) ≜

α

α− 1
log ∑

v∈V
∥PU(·)1/αPV|U(v|·)∥α. (6.18)

Also, IS
1 (PU,V) = I(PU,V) and IS

∞(PU,V) = log
(

∑v∈V maxu∈U PV|U(v|u)
)

.

The following proposition shows that maximal α-leakage is the Arimoto’s capacity under an

input support constraint which, in turn, is equal to Sibson’s capacity under the same constraint.

Proposition 13 (Theorem 2, [178]). Let U and V be two random variables supported over finite sets U and

V , respectively. For α ∈ (1, ∞], maximal α-leakage satisfies

Lmax
α (U → V) = sup

PŨ

IA
α (PŨ · PV|U) = sup

PŨ

IS
α(PŨ · PV|U), (6.19)

where the support of PŨ is a subset of the support of PU
1. Also, Lmax

1 (U → V) = I(PU,V).

In particular, maximal α-leakage of order infinity (i.e., maximal leakage) is the Sibson’s mutual

information of order infinity.

Proposition 14 (Corollary 1, [133]). Let U and V be two random variables supported over finite sets U and

V , respectively. Then,

Lmax
∞ (U → V) = IS

∞(PU,V). (6.20)

f -Information

We finish our review on information leakage measures by recalling the definition and some basic

properties of f -information. This information leakage measure is defined in terms of Csiszár’s

f -divergence whose definition is recalled next for the reader’s convenience.

Definition 23 (Definition 1.1, [70]). Let f : (0, ∞)→ R be a convex function with f (1) = 0. Assume

that Q1 and Q2 are two probability distributions over a finite set Z and that Q1 ≪ Q2. The

1In [178, Theorem 2], PŨ ranges over the distributions with the same support as PU . However, their proof readily implies
Proposition 13 as stated in this chapter.
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f -divergence between Q1 and Q2 is given by

D f (Q1∥Q2) ≜ ∑
z∈Z

Q2(z) f
(

Q1(z)
Q2(z)

)
. (6.21)

Given a function f as in the previous definition, its corresponding f -information is defined as

follows.

Definition 24. Let f : (0, ∞) → R be a convex function with f (1) = 0. Furthermore, let U and V

be two random variables supported over finite sets U and V , respectively. Their f -information is

defined by

I f (PU,V) ≜ D f (PU,V∥PU PV)

= ∑
u∈U

∑
v∈V

PU(u)PV(v) f
(

PU,V(u, v)
PU(u)PV(v)

)
.

(6.22)

While an f -information may not have a straightforward interpretation in operational terms for

a specific function f , many functions f do, e.g., mutual information and χ2-information discussed

below. Hence, a general treatment allows us to simultaneously handle those f -information for

which there is a concrete operational meaning and those whose operational interpretation is yet

to be discovered. More recent developments about the properties of f -divergence can be found in

Raginsky [223], Calmon et al. [54], and the references therein.

In the context of privacy, χ2-information is a fine example of an f -information with a tangible

operational interpretation. Following the standard convention, the χ2-information between two

random variables U and V is defined as χ2(PU,V) ≜ I f (PU,V) with f (t) = (t− 1)2. Relying on the

so-called principal inertia components (PICs) [113], Calmon et al. [53] showed that if χ2(U; V) < ϵ for

some 0 < ϵ < 1, then the minimum mean-squared error (MMSE) of reconstructing any zero-mean unit-

variance function of U given V is lower bounded by 1− ϵ, i.e., no function of U can be reconstructed

with small MMSE given an observation of V. Thus, χ2-information measures an adversary’s ability

to reconstruct functions of U from V under an MMSE loss. Recently, χ2-information has been used

in the context of privacy-utility trade-offs by Wang and Calmon in [281].

6.3.2 Large Deviations Bounds for Distribution Estimation

Now we review some preliminary results regarding the distance between the empirical and true

distributions. Throughout this chapter, we measure the distance between two probability distributions
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over Z , say Q1 and Q2, by their ℓ1-distance which is given by

∥Q1 −Q2∥1 ≜ ∑
z∈Z
|Q1(z)−Q2(z)|. (6.23)

A result by Weissman et al. [292, Theorem 2.1] establishes that, for all ϵ > 0,

Pr
(
∥P̂n − P∥1 ≥ ϵ

)
≤ (2|Z| − 2) exp(−nϕ(πP)ϵ

2/4), (6.24)

where P is a probability distribution over the finite set Z , P̂n is the empirical distribution obtained

from n i.i.d. samples from P, πP ≜ max
A⊆Z

min{P(A), 1− P(A)}, and

ϕ(p) ≜


1

1−2p log 1−p
p p ∈ [0, 1/2),

2 p = 1/2.
(6.25)

Note that ϕ(p) ≥ 2 for all p ∈ [0, 1/2]. Hence,

Pr
(
∥P̂n − P∥1 ≥ ϵ

)
≤ exp(|Z|) exp(−nϵ2/2). (6.26)

By taking Z = S ×X and ϵ =
√

2
n (|S| · |X | − log β), inequality (6.26) implies that, with probability

at least 1− β,

∥P̂n − P∥1 ≤
√

2
n
(|S| · |X | − log β). (6.27)

Even though in this chapter we focus on large deviations results, it is worth pointing out that the

order O(
√
|S| · |X |/n) is present in other fundamental settings, e.g., the minimax expected loss

framework in [150, Corollary 9].

6.3.3 Problem Setup

We follow the same framework considered in the last chapter. Again, S is a variable to be hidden

(e.g., political preference) and X is an observed variable (e.g., movie ratings) that is correlated with S.

In order to receive some utility (e.g., personalized recommendations), we would like to disclose as

much information about X without compromising S. An approach with rigorous privacy guarantees

is to release a new random variable Y produced by applying a randomized mapping to X, hence

forming a Markov chain S→ X → Y. This mapping, called the privacy mechanism, is designed to

satisfy a specific privacy constraint.

In the sequel, we assume that S and X are discrete random variables with support sets S and
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X , respectively. Let W be the set of all privacy mechanisms which take X as input and display a

discrete random variable Y as output. More specifically, let

W ≜
⋃

N≥1

{
W ∈ [0, 1]|X |×N : ∀x ∈ X ,

N

∑
y=1

W(x, y) = 1
}

. (6.28)

Through this chapter, we denote the joint distribution of S and X by P and the privacy mechanism

producing Y from X by W, i.e., W = PY|X. The privacy leakage and the utility generated by a

mapping W ∈ W for the true distribution P are denoted by L(P, W) and U (P, W), respectively.

Throughout this chapter, L and U are either probability of correctly guessing, f -information with

f locally Lipschitz, Arimoto’s mutual information (α-leakage) of order α ∈ (1, ∞], Sibson’s mutual

information of order α ∈ (1, ∞], or maximal α-leakage of order α ∈ (1, ∞].

In this framework, a natural problem is to characterize the fundamental trade-off between privacy

and utility as captured by the following definition. We denote by P the set of all probability

distributions over S ×X .

Definition 25. For a given P ∈ P and ϵ ≥ inf
W∈W

L(P, W), the privacy-utility function is defined as

H(P; ϵ) ≜ sup
W∈D(P;ϵ)

U (P, W), (6.29)

where D(P; ϵ) ≜ {W ∈ W : L(P, W) ≤ ϵ}. Furthermore, the collection of all optimal privacy

mechanisms for P at ϵ is defined as

W∗(P; ϵ) ≜ {W ∈ W : L(P, W) ≤ ϵ, U (P, W) = H(P; ϵ)}. (6.30)

Observe that, by definition, D(P; ϵ) is the set of all privacy mechanisms providing an ϵ-privacy

guarantee for P. Hence, the privacy-utility function in Definition 25 quantifies the best utility

achieved by any privacy mechanism providing an ϵ-privacy guarantee for P.

This specific type of privacy-utility trade-off (PUT), and the optimal privacy mechanisms as-

sociated to it, has been investigated for several measures of privacy and utility, see, for example,

[17, 18, 227, 281]. These investigations often rely on the implicit assumption that the data distribution

is, for the most part, known. However, in practice, the data distribution may only be accessed

through a limited number of samples. In this chapter, we revisit this assumption and study its

implications in the design and performance of privacy mechanisms. Next we present the problems

addressed and the main contributions of this chapter.
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Discrepancy of Privacy-Utility Guarantees

In practice, the designer may not have access to the true distribution P, but only to samples drawn

from this distribution. In this case, the privacy-utility guarantees for a distribution estimated from

the samples, say P̂, and the true distribution P might be different. For any given privacy mechanism

W, these discrepancies are effectively quantified by

|L(P̂, W)−L(P, W)| and |U (P̂, W)−U (P, W)|. (6.31)

In Section 6.4 we provide probabilistic upper bounds for the discrepancies in (6.31) when the

estimated distribution P̂ is the empirical distribution P̂n of n i.i.d. samples drawn from P. These

upper bounds depend on the sample size n, the alphabet sizes |S| and |X |, and, in some cases, the

probability of the least likely symbol of the marginals of P̂n. Their derivations rely on the large

deviations results [292] and continuity properties of information leakage measures established in

this chapter. We summarize these results in the following meta theorem (see Theorem 11). For ease

of notation, we let

Lc(Q, W) ≜ Pc(S|Y) and Uc(Q, W) ≜ Pc(X|Y), (6.32)

where S→ X → Y is such that PS,X = Q and PY|X = W. With this notation, we also let L f (Q, W) ≜

I f (PS,Y), LA
α (Q, W) ≜ IA

α (PS,Y), LS
α(Q, W) ≜ IS

α (PS,Y), and, by abuse of notation, Lmax
α (Q, W) ≜

Lmax
α (S→ Y). The analogues for utility are defined in a similar way.

Theorem 11. Let P̂n be the empirical distribution obtained from n i.i.d. samples drawn from P. Then, with

probability at least 1− β, for any W ∈ W , we have

|L(P̂n, W)−L(P, W)|

≤
√

2
n
(|S| · |X | − log β) ·



1 when L = Lc,

C f ,mS when L = L f with f locally Lipschitz,

2α
α−1 |S|1−1/α when L = LA

α with α ∈ (1, ∞],

2α+1
(α−1)m1−1/α

S
when L = LS

α with α ∈ (1, ∞),

2
mins ∑x P̂n(s,x)

when L = LS
∞ or L = Lmax

∞ ,

4α|S|1−1/α

(α−1)mins ∑x P̂n(s,x)
when L = Lmax

α with α ∈ (1, ∞),

(6.33)
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|U (P̂n, W)−U (P, W)|

≤
√

2
n
(|S| · |X | − log β) ·



1 when U = Uc,

C f ,mX when U = U f with f locally Lipschitz,

2α
α−1 |X |1−1/α when U = UA

α with α ∈ (1, ∞],

1
(α−1)m1−1/α

X
when U = US

α with α ∈ (1, ∞),

0 when U = US
∞ or U = Umax

α with α ∈ (1, ∞],

(6.34)

where C f ,u = 2K f ,u−1 + (2u−1 + 1)L f ,u−1 with Kg,u, Lg,u, mS and mX as defined in (6.40), (6.41), (6.55),

and (6.56), respectively.

We illustrate the discrepancies of privacy-utility guarantees in (6.33) and (6.34) along with the

corresponding upper bounds through a synthetic and a real-world datasets in Section 6.7.

Convergence of Optimal Privacy Mechanisms

Assume there is a sequence of joint distributions (Pn)∞
n=1 converging to the true distribution P.

The results provided in Section 6.4 establish that the privacy-utility guarantees for Pn converge

to those of P as n goes to infinity. Nonetheless, they cannot be used to study the convergence

properties of the optimal privacy mechanisms of Pn as defined in (6.30). In Section 6.5 we address the

convergence of optimal privacy mechanisms by further exploiting some of the Lipschitz continuity

properties established for the information leakage measures under consideration. To be more specific,

assume that the privacy mechanism designer constructs an optimal privacy mechanism W∗n for

each Pn, i.e., W∗n ∈ W∗(Pn; ϵ). We establish the convergence of the sequence of optimal privacy

mechanisms (W∗n )∞
n=1 to the set of optimal privacy mechanisms for P, i.e.,W∗(P; ϵ). Due to technical

considerations, this result covers only probability of correctly guessing, f -information with f locally

Lipschitz, and Arimoto’s mutual information of order α with α ∈ (1, ∞].

Uniform Privacy Mechanisms

In applications where privacy is a priority, a specific privacy guarantee for the true distribution

P may be required, even though the designer has only access to a distribution P̂ estimated from

samples. We propose the following procedure to overcome this difficulty: (a) use large deviations

results to find a probabilistic upper bound, say r, for the distance between P̂ and P; (b) design privacy
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mechanisms that deliver the required privacy guarantee for all distributions at distance less or equal

than r from P̂. Based on this procedure, we introduce the definition of uniform privacy mechanisms

in Section 6.6. We prove that optimal uniform privacy mechanisms exist and while their design

might be challenging, they can be efficiently approximated by optimal privacy mechanisms for P̂

as defined in (6.30). We finish Section 6.6 establishing convergence properties of optimal uniform

privacy mechanisms similar to those in Section 6.5.

6.4 Discrepancy of Privacy-Utility Guarantees

We provide probabilistic upper bounds for the difference between the privacy-utility guarantees

of the empirical and the true distributions. These upper bounds do not depend on the specific

privacy mechanism. In order to simplify the exposition, we assume that privacy leakage and

utility are measured using the same information metric. Nonetheless, the case when different

information metrics are used can be handled in a straightforward manner. In this section, we study

five different information metrics: probability of correctly guessing, f -information with f locally

Lipschitz, Arimoto’s mutual information (α-leakage) of order α > 1, Sibson’s mutual information of

order α > 1, and maximal α-leakage of order α > 1.

6.4.1 Probability of Correctly Guessing

The main result of this subsection relies on the following lemma which establishes the Lipschitz

continuity of the mappings Lc(·, W) and Uc(·, W). Recall that for Q ∈ P and W ∈ W ,

Lc(Q, W) ≜ Pc(S|Y) and Uc(Q, W) ≜ Pc(X|Y), (6.35)

where S→ X → Y is such that PS,X = Q and PY|X = W.

Lemma 15. For any Q1, Q2 ∈ P and W ∈ W , we have

|Lc(Q1, W)−Lc(Q2, W)| ≤ ∥Q1 −Q2∥1, (6.36)

|Uc(Q1, W)−Uc(Q2, W)| ≤ ∥Q1 −Q2∥1. (6.37)

Proof. See Appendix D.1.1.

In particular, when Q1 = P̂ is an estimate of Q2 = P, the previous lemma implies that any upper
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bound on ∥P̂− P∥1 translates into an upper bound for difference of the corresponding privacy-utility

guarantees. The following theorem specializes this observation to the empirical distribution by

means of the large deviations inequality in (6.27).

Theorem 12. Let P̂n be the empirical distribution obtained from n i.i.d. samples drawn from P. Then, with

probability at least 1− β, for any W ∈ W , we have

|Lc(P̂n, W)−Lc(P, W)| ≤
√

2
n
(|S| · |X | − log β), (6.38)

|Uc(P̂n, W)−Uc(P, W)| ≤
√

2
n
(|S| · |X | − log β). (6.39)

In Section 6.7.2 we illustrate the fitness of the bounds in Theorem 12 when applied to ProPublica’s

COMPAS dataset [10].

Remark 9. Lemma 15 and Theorem 12 illustrate the general technique we use to derive (probabilistic)

upper bounds for the difference between the privacy-utility guarantees of the empirical and the true

distributions. Specifically, we relate the difference between the privacy-utility guarantees of two joint

distributions with their ℓ1 distance, and then we use large deviations results to provide upper bound

for the ℓ1 distance between the empirical and the true distributions.

6.4.2 f -Information with f Locally Lipschitz

We start establishing the following notation. For a given function g : [0, ∞)→ R and u > 0, we let

Kg,u ≜ sup{|g(t)| : t ∈ [0, u]}. (6.40)

The constant Kg,u is the so-called supremum norm of g on [0, u]. In addition, if g is Liptschitz on

[0, u], we let Lg,u be its Lipschitz constant on [0, u], i.e.,

Lg,u ≜ min{L ≥ 0 : |g(t1)− g(t2)| ≤ L|t1 − t2|, ∀t1, t2 ∈ [0, u]}. (6.41)

A function g : [0, ∞)→ R is called locally Lipschitz if g is Lipschitz on [0, u] for every u > 0. Note

that a locally Lipschitz function is not necessarily Lipschitz on [0, ∞). For example, the function

g(t) = t2 is locally Lipschitz with Lg,u = 2u for all u > 0, but it is not Lipschitz on [0, ∞). For any
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two distributions Q1, Q2 ∈ P , we denote

mS ≜ min

{
∑

x∈X
Qi(s, x) : s ∈ S , i ∈ {1, 2}

}
, (6.42)

mX ≜ min

{
∑
s∈S

Qi(s, x) : x ∈ X , i ∈ {1, 2}
}

. (6.43)

Observe that mS (resp. mX) equals the probability of the least likely symbol among the marginal

distributions over S (resp. X ) of Q1 and Q2. In other words, if (Si, Xi) has joint distribution Qi for

each i ∈ {1, 2}, then

mS = min{PSi (s) : s ∈ S , i ∈ {1, 2}}, (6.44)

mX = min{PXi (x) : x ∈ X , i ∈ {1, 2}}. (6.45)

The following lemma serves as an analogue of Lemma 15 for an f -information with f locally

Lipschitz. Recall that for Q ∈ P and W ∈ W ,

L f (Q, W) ≜ I f (PS,Y) and U f (Q, W) ≜ I f (PX,Y), (6.46)

where S→ X → Y is such that PS,X = Q and PY|X = W.

Lemma 16. If f : [0, ∞)→ R is locally Lipschitz, then, for any Q1, Q2 ∈ P and W ∈ W , we have

|L f (Q1, W)−L f (Q2, W)| ≤ C f ,mS∥Q1 −Q2∥1, (6.47)

|U f (Q1, W)−U f (Q2, W)| ≤ C f ,mX∥Q1 −Q2∥1, (6.48)

where, for u ∈ {mS, mX}, C f ,u ≜ 2K f ,u−1 + (2u−1 + 1)L f ,u−1 .

Proof. See Appendix D.1.2.

Remark 10. Despite the similarity between Lemmas 15 and 16, the latter does not imply that the

mapping L f (·, W) is Lipschitz continuous. Indeed, the factor C f ,mS depends on Q1 and Q2 through

mS. Nonetheless, Lemma 16 does show that the local Lipschitzianity of f is bequeathed to L f (·, W).

Specifically, for every δ > 0, the mapping L f (·, W) is Lipschitz continuous over{
Q ∈ P : δ ≤ min

s∈S ∑
x∈X

Q(s, x)

}
, (6.49)

and its Lipschitz constant is less than or equal to C f ,δ. Indeed, this assertion follows from the fact

that u 7→ C f ,u is a non-increasing function, as exhibited in Appendix D.1.3. Hence, any lower bound
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for mS translates into an upper bound for C f ,mS in (6.47). As shown below, the local Lipschitzianity of

L f (·, W) is enough to derive a bound similar to (6.38). A similar discussion can be held for U f (·, W).

We illustrate the value of C f ,u, defined in Lemma 16, through the following examples:

• Total variation distance. If f (t) = |t − 1|/2, then f is a (globally) Lipschitz function with

L f ,u = 1/2 and K f ,u = max{1, u− 1}/2 for all u > 0. Consequently,

C f ,u = u−1 max{1 + 3u/2, 2− u/2}; (6.50)

• χ2-divergence. If f (t) = (t− 1)2, then f is a locally Lipschitz function with L f ,u = 2 max{1, u−
1} and K f ,u = max{1, (u− 1)2} for all u > 0. Consequently,

C f ,u = 2u−2 max{2u + 2u2, 3− 3u}; (6.51)

• Hellinger divergence. If fα(t) =
tα − 1
α− 1

with α > 1, then fα is locally Lipschitz with L fα ,u =
αuα−1

α− 1
and K f ,u = 1

α−1 max{1, uα − 1} for all u > 0. Consequently,

C f ,u =
u−α

α− 1
max{2α + αu + 2uα, (2α + 2) + αu− 2uα}. (6.52)

Note, however, that mutual information cannot be handled by Lemma 16 since the function f (t) =

t log(t) is not locally Lipschitz. In fact, mutual information seems to have a different asymptotic

behavior w.r.t. the sample size n when compared to the theorems in this chapter, cf. [245, Theorem 3].

Relying on Lemma 16 and the large deviations inequality in (6.27), the following theorem provides

a data dependent bound for the discrepancy between the guarantees provided for the empirical and

the true distributions. For x ∈ R, we define (x)+ ≜ max{0, x}.

Theorem 13. Let P̂n be the empirical distribution obtained from n i.i.d. samples drawn from P. If f : [0, ∞)→
R is locally Lipschitz, then, with probability at least 1− β, for any W ∈ W , we have

|L f (P̂n, W)−L f (P, W)| ≤ C f ,mS

√
2
n
(|S| · |X | − log β), (6.53)

|U f (P̂n, W)−U f (P, W)| ≤ C f ,mX

√
2
n
(|S| · |X | − log β), (6.54)
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where, for u ∈ {mS, mX}, C f ,u ≜ 2K f ,u−1 + (2u−1 + 1)L f ,u−1 ,

mS ≜

(
min

{
∑

x∈X
P̂n(s, x) : s ∈ S

}
−
√

2
n
(|S| · |X | − log β)

)
+

, (6.55)

mX ≜

(
min

{
∑
s∈S

P̂n(s, x) : x ∈ X
}
−
√

2
n
(|S| · |X | − log β)

)
+

. (6.56)

Proof. See Appendix D.1.3.

Remark 11. Observe that up to an additive factor of (2(|S| · |X | − log β)/n)1/2, which is negligible

in the large n regime, mS equals the probability of the least likely symbol of the marginal distribution

over S of P̂n. As a consequence, the bound in (6.53) is data-dependent, while the bound in (6.38) is

data-independent. This discrepancy comes mainly from the fact that Lc(·, W) is Lipschitz continuous,

as established in Lemma 15, while L f (·, W) is locally Lipschitz in the sense of Remark 10. A similar

discussion holds for utility.

In most practical scenarios, the alphabet of X is significantly larger than the alphabet of S, e.g., S

might be political preference while X is movie ratings, S might be private household information

while X is smart meter data, S might be gender while X is a profile picture, etc. In particular, when

the sample size is limited, the bounds in Theorem 13 might become ineffective due to the potentially

small value of mX . In order to alleviate this issue, we propose the following pre-processing technique

which combines the symbols of X with less observations in the dataset.

Given γ ≥ 0 and a symbol x0 not belonging to X , we let Πγ be the mapping with input alphabet

X , output alphabet

Xγ ≜ {x0} ∪
{

x ∈ X : ∑
s∈S

P̂(s, x) ≥ γ

}
, (6.57)

and determined by

Πγ(x) =


x if ∑s P̂(s, x) ≥ γ,

x0 otherwise.
(6.58)

The proposed pre-processing technique consists in applying this mapping to the samples {(si, xi)}n
i=1

to obtain the modified samples {(si, Πγ(xi))}n
i=1. Clearly, this pre-processing technique improves

the bounds in Theorem 13 by increasing mX . However, this improvement might come at a price in

utility, as shown in the following proposition.

Proposition 15. Let γ ≥ 0 be given and let P̂n be the empirical distribution of n samples {(si, xi)}n
i=1. If
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P̂γ is the empirical distribution of the modified samples {(si, Πγ(xi))}n
i=1, then, for any ϵ ∈ R such that

W∗(P̂γ; ϵ) ̸= ∅,

H f (P̂γ; ϵ) ≤ H f (P̂n; ϵ), (6.59)

where H f denotes the privacy-utility function when both privacy leakage and utility are measured using

f -information.

Proof. See Appendix D.1.4.

The proof of Proposition 15 relies on the following lemma.

Lemma 17. Let γ ≥ 0 be given. If X → X0 → Y0 is a Markov chain with X0 = Πγ(X), then, for every

f -information,

I f (PX,Y0) = I f (PX0,Y0). (6.60)

Observe that Lemma 17 is an immediate consequence of the data processing inequality (DPI)

for f -information [221, Remark 2.3] and the fact that X0 is a deterministic function of X. Indeed, if

Π : X → X0 is any deterministic function and X0 ≜ Π(X), then any random variable Y0 satisfies

X0 → X → Y0. In particular, the DPI implies that I f (PX,Y0) ≥ I f (PX0,Y0). If, in addition, Y0 is a

randomized function of X0, i.e., X → X0 → Y0, then the DPI leads to I f (PX,Y0) ≤ I f (PX0,Y0).

6.4.3 Arimoto’s Mutual Information, Sibson’s Mutual Information, and Maximal

α-Leakage

We now establish continuity properties of Arimoto’s mutual information, Sibson’s mutual informa-

tion, and maximal α-leakage similar to those proved in Lemmas 15 and 16 for probability of correctly

guessing and f -information, respectively. Upon these properties, we state two theorems regarding

the discrepancy of privacy-utility guarantees for the information measures at hand.

Recall that for Q ∈ P and W ∈ W ,

LA
α (Q, W) ≜ IA

α (PS,Y) and UA
α (Q, W) ≜ IA

α (PX,Y) , (6.61)

where S → X → Y is such that PS,X = Q and PY|X = W. The next lemma shows the Lipschitz

continuity of LA
α (·, W) and UA

α (·, W).
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Lemma 18. Let α ∈ (1, ∞]. For any Q1, Q2 ∈ P and W ∈ W ,

|LA
α (Q1, W)−LA

α (Q2, W)| ≤ 2α

α− 1
|S|1−1/α∥Q1 −Q2∥1, (6.62)

|UA
α (Q1, W)−UA

α (Q2, W)| ≤ 2α

α− 1
|X |1−1/α∥Q1 −Q2∥1. (6.63)

Proof. See Appendix D.1.5.

Remark 12. Recall that probability of correctly guessing and Arimoto’s mutual information of order

∞ are related through the formula

IA
∞(U; V) = log

Pc(U|V)

Pc(U)
. (6.64)

Observe that, despite this relation, the bound for probability of correctly guessing in (6.36) and the

corresponding bound for Arimoto’s mutual information of order ∞ in (6.62) differ by a factor of 2|S|.
As shown in the proof of Lemma 18, the |S| factor comes from the log in (6.64) via the minimum in

the following inequality ∣∣∣log
a
b

∣∣∣ ≤ |a− b|
min{a, b} , a, b > 0. (6.65)

A similar argument explains the extra factor of 2|X | appearing in (6.63) w.r.t. its counterpart in (6.37).

Now we consider Sibson’s mutual information. Recall that for Q ∈ P and W ∈ W ,

LS
α(Q, W) ≜ IS

α (PS,Y) and US
α (Q, W) ≜ IS

α (PX,Y) , (6.66)

where S→ X → Y is such that PS,X = Q and PY|X = W. The following lemma establishes that the

mappings LS
α(·, W) and US

α (·, W) have similar continuity properties to those of L f (·, W) and U f (·, W)

with f locally Lipschitz.

Lemma 19. For Q1, Q2 ∈ P , we define mS and mX as in (6.42) and (6.43), respectively. If α ∈ (1, ∞), then,

for any W ∈ W ,

|LS
α(Q1, W)−LS

α(Q2, W)| ≤ 2α + 1
α− 1

∥Q1 −Q2∥1

m1−1/α
S

, (6.67)

|US
α (Q1, W)−US

α (Q2, W)| ≤ 1
α− 1

∥Q1 −Q2∥1

m1−1/α
X

. (6.68)
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If α = ∞, then, for any W ∈ W ,

|LS
∞(Q1, W)−LS

∞(Q2, W)| ≤ 2∥Q1 −Q2∥1

mins ∑x Q1(s, x)
, (6.69)

|US
∞(Q1, W)−US

∞(Q2, W)| = 0. (6.70)

Proof. See Appendix D.1.6.

Remark 13. A straightforward manipulation shows that

exp
(

IA
∞(PU,V)

)
= ∑

v∈V
max
u∈U

PU(u)
maxu′ PU(u′)

PV|U(v|u), (6.71)

exp
(

IS
∞(PU,V)

)
= ∑

v∈V
max
u∈U

PV|U(v|u). (6.72)

From (6.71) and (6.72), we observe that Sibson’s mutual information of order infinity is independent

of the input distribution PU , while Arimoto’s mutual information of the same order is not. By

comparing (6.62) and (6.69), we also observe that the privacy leakage bound for Sibson’s mutual

information of order infinity does depend on the probability of the least likely symbol of the input2,

while its Arimoto’s counterpart does not. These seemingly contradicting facts have a rather intuitive

cause: it is hard to estimate PV|U(·|u) reliably if PU(u) is small. Observe that while PV|U(v|u)
appears in both (6.71) and (6.72), the factor PU(u)/ maxu′ PU(u′) in (6.71) makes Arimoto’s mutual

information of order infinity less dependent on symbols u with small probabilities PU(u). The

difficulty in estimating Sibson’s mutual information in comparison to its Arimoto counterpart is also

natural from a privacy perspective. As proved by Issa et al. in [133], Sibson’s mutual information

guarantees privacy for any (possibly randomized) function of S, while Arimoto’s mutual information

guarantees privacy only for S itself.

We end up this section showing that maximal α-leakage (α > 1) behaves in a similar way to

Sibson’s mutual information of order ∞. Recall that for Q ∈ P and W ∈ W ,

Lmax
α (Q, W) ≜ sup

PS̃

IA
α

(
PS̃ · (PX|SW)

)
and Umax

α (Q, W) ≜ sup
PX̃

IA
α

(
PX̃ ·W

)
, (6.73)

where S→ X → Y is such that PS,X = Q and PY|X = W.

2In recent work [133], Issa et al. established a bound similar to (6.78) which also depends on the probability of the least
likely symbol of the input. Thus, this dependency seems unavoidable at the moment.
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Lemma 20. Let α ∈ (1, ∞). For any Q1, Q2 ∈ P and W ∈ W ,

|Lmax
α (Q1, W)−Lmax

α (Q2, W)| ≤ 4α

α− 1
|S|1−1/α

mins ∑x Q1(s, x)
∥Q1 −Q2∥1, (6.74)

|Umax
α (Q1, W)−Umax

α (Q2, W)| = 0. (6.75)

Proof. See Appendix D.1.7.

We summarize the probabilistic upper bounds derived in this subsection in the following two

theorems. They follow immediately from Lemma 18, 19, 20 and the large deviations inequality in

(6.27).

Theorem 14. Let P̂n be the empirical distribution obtained from n i.i.d. samples drawn from P. Then, with

probability at least 1− β, for any W ∈ W , we have

|L(P̂n, W)−L(P, W)| ≤
√

2
n
(|S| · |X | − log β) ·


2α

α−1 |S|1−1/α when L = LA
α with α ∈ (1, ∞],

2α+1
(α−1)m1−1/α

S
when L = LS

α with α ∈ (1, ∞),

(6.76)

|U (P̂n, W)−U (P, W)| ≤
√

2
n
(|S| · |X | − log β) ·


2α

α−1 |X |1−1/α when U = UA
α with α ∈ (1, ∞],

1
(α−1)m1−1/α

X
when U = US

α with α ∈ (1, ∞),

(6.77)

where mS and mX are defined in (6.55) and (6.56), respectively.

Theorem 15. Let P̂n be the empirical distribution obtained from n i.i.d. samples drawn from P. Then, with

probability at least 1− β, for any W ∈ W , we have

|L(P̂n, W)−L(P, W)| ≤
2
√

2
n (|S| · |X | − log β)

mins ∑x P̂n(s, x)
·


1 when L = LS

∞ or L = Lmax
∞ ,

2α|S|1−1/α

α−1 when L = Lmax
α with α ∈ (1, ∞),

(6.78)

and |U (P̂n, W)−U (P, W)| = 0 when U = US
∞ or U = Umax

α with α ∈ (1, ∞].
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6.5 Convergence of Optimal Privacy Mechanisms

Now we study the consistency of the optimal privacy mechanisms using, among other results, the

(local) Lipschitz continuity of the mappings L(·, W) and U (·, W) established in the previous section.

Assume that the (privacy) mechanism designer is given an ϵ ∈ R and a sequence of joint

distributions (Pn)∞
n=1 converging to the true distribution P. Furthermore, the designer constructs

an optimal ϵ-private mechanism W∗n for each Pn. In this section, we analyze some convergence

properties of the sequence of optimal privacy mechanisms (W∗n )∞
n=1.

In the sequel, we assume that prior knowledge about the true distribution P might be available.

Accordingly, we let Q ⊆ P be the set of all joint distributions compatible with such prior knowledge.

Note that when no prior knowledge is available, we simply let Q = P . The main results of this and

the following section are established under the following conditions.

There exist a closed set Q ⊆ P and N ∈N such that

(C.1) Continuity. For every Q ∈ Q, the mappings L(Q, ·) and U (Q, ·) are continuous over

WN ≜W ∩R|X |×N , (6.79)

where W , as defined in (6.28), denotes the set of all privacy mechanisms. Furthermore, the

mapping H(Q; ·) is continuous over [ϵmin(Q), ∞), where

ϵmin(Q) ≜ inf {L(Q, W) : W ∈ W} . (6.80)

(C.2) Lipschitz Continuity. There exist positive constants CL and CU such that, for all Q1, Q2 ∈ Q and

W ∈ WN ,

|L(Q1, W)−L(Q2, W)| ≤ CL∥Q1 −Q2∥1, (6.81)

|U (Q1, W)−U (Q2, W)| ≤ CU∥Q1 −Q2∥1. (6.82)

(C.3) Support. For each Q ∈ Q and ϵ ≥ ϵmin(Q), the intersectionW∗(Q; ϵ) ∩WN is not empty.

These three conditions might seem restrictive at a first glance. Nonetheless, as shown in

Section 6.5.1 below, they are satisfied by probability of correctly guessing, f -information with f

locally Lipschitz, and Arimoto’s mutual information of order α with α ∈ (1, ∞].

Note that condition (C.1) is a continuity requirement. Specifically, it requires the privacy leakage

and utility functions to be continuous w.r.t. the privacy mechanism W. Also, it requires the privacy-
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utility function to be continuous w.r.t. the privacy parameter ϵ. Similarly, condition (C.2) requires

the privacy leakage and utility functions to be Lipschitz continuous w.r.t. the joint distribution Q.

Observe that the constants CL and CU in (6.81) and (6.82), respectively, do not depend on the joint

distributions Q1 and Q2 neither on the privacy mechanism W. Nonetheless, these constants may

depend on Q and N.

Remark 14. Observe that the setWN is in correspondence with the set of all privacy mechanisms

from X to {1, . . . , N}. In particular, condition (C.3) requires that, for each Q ∈ Q and ϵ ≥ ϵmin(Q),

there exists an optimal ϵ-private mechanism for Q supported over {1, . . . , N}. As a consequence,

H(Q; ϵ) = max
W∈DN(Q;ϵ)

U (Q, W), (6.83)

where DN(Q; ϵ) ≜ {W ∈ WN : L(Q, W) ≤ ϵ}. Furthermore, the intersection ofWN and all optimal

privacy mechanisms is defined as

W∗N(P; ϵ) ≜ {W ∈ WN : L(P, W) ≤ ϵ, U (P, W) = H(P; ϵ)}. (6.84)

By comparing (6.29) and (6.83), we can observe that condition (C.3) allows us to replace the

unbounded set W with the compact space WN in the optimization defining the privacy-utility

function H. This technical difference is crucial in the proofs of the subsequent results. In a similar

spirit, observe that condition (C.3) also implies that

ϵmin(Q) = min {L(Q, W) : W ∈ WN} . (6.85)

A two-variable function might be continuous in each argument without being jointly continuous,

see, e.g., [235, Ex. 4.7]. The following lemma is an immediate, yet important, consequence of

conditions (C.1–2), as it establishes the joint continuity of the privacy leakage and utility functions.

Lemma 21. Assume that conditions (C.1–2) hold true for a given closed set Q ⊆ P and a given N ∈N. The

functions L(·, ·) and U (·, ·) are continuous over Q×WN .

Proof. See Appendix D.2.1.

Building upon Lemma 21, we establish the following proposition which plays a key role in the

proofs of the main results of this section.

Proposition 16. Assume that conditions (C.1–3) hold true for a given closed set Q ⊆ P and a given N ∈N.

For any given ϵ ∈ R, the mapping H(·; ϵ) is continuous over the set {Q ∈ Q : ϵmin(Q) < ϵ}.
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Proof. See Appendix D.2.2.

Remark 15. The mapping H(·; ϵ) might not be continuous over {Q ∈ Q : ϵmin(Q) ≤ ϵ}. In order to

prove this claim, consider the following example.

Example 7. For each ζ ∈ [0, 1/2], let Qζ be the joint distribution of (S, Xζ) where S ∼ Ber(1/2) and

PXζ |S = BSC(ζ). By definition, Hc denotes the privacy-utility function when both privacy leakage

and utility are measured using probability of correctly guessing. By Theorem 2 in [18], we have that,

for every ζ ∈ [0, 1/2),

ϵmin(Qζ) = 1/2 and Hc(Qζ ; 1/2) = 1/2. (6.86)

Since S and X1/2 are independent, we also have that

ϵmin(Q1/2) = 1/2 and Hc(Q1/2; 1/2) = 1. (6.87)

Therefore, we have that lim
ζ↑1/2

Hc(Qζ ; 1/2) ̸= Hc(Q1/2; 1/2) although lim
ζ↑1/2

Qζ = Q1/2.

Despite that H(·; ϵ) might be discontinuous at the boundary {Q ∈ Q : ϵmin(Q) = ϵ}, as

presented in Example 7, in some situations such pathological behavior is not exhibited. In such

cases, the following corollary provides conditions for which the pointwise convergence established in

Proposition 16 upgrades into uniform convergence. This technical result will be useful in explaining

the numerical experiments in Section 6.7.

Corollary 5. Assume that conditions (C.1–3) hold true for a given closed set Q ⊆ P and a given N ∈N. In

addition, assume that there exists ϵ0 ∈ R such that ϵmin(Q) = ϵ0 for all Q ∈ Q. If Pn ∈ Q for each n ∈N,

limn Pn = P, and limn H(Pn; ϵ0) = H(P; ϵ0), then H(Pn; ·) converges uniformly to H(P; ·) over [ϵ0, ∞), i.e.,

lim
n→∞

sup
ϵ∈[ϵ0,∞)

|H(Pn; ϵ)−H(P, ϵ)| = 0. (6.88)

Proof. See Appendix D.2.3.

The next theorem shows that if W∗n is an optimal ϵ-private mechanism for Pn and (Pn)∞
n=1

converges to P, then the sequence of optimal ϵ-private mechanisms (W∗n )∞
n=1 converges to the set of

optimal ϵ-private mechanisms for P. For W ∈ WN and a subsetW ′ ⊆ WN , the distance between W

andW ′ is defined as

dist(W,W ′) ≜ inf{∥W −W ′∥1 : W ′ ∈ W ′}, (6.89)
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where ∥W −W ′∥1 = ∑
x∈X

∑
y∈Y
|W(x, y)−W ′(x, y)|.

Theorem 16. Assume that conditions (C.1–3) hold true for a given closed set Q ⊆ P and a given N ∈N.

Let ϵ ∈ R be given. If Pn ∈ Q for each n ∈ N, limn Pn = P, and ϵmin(P) < ϵ, then, for any sequence

(W∗n )∞
n=1 ⊂ WN such that W∗n ∈ W∗N(Pn; ϵ),

lim
n→∞

dist(W∗n ,W∗N(P; ϵ)) = 0. (6.90)

Furthermore, if Pn = P̂n is the empirical distribution obtained from n i.i.d. samples drawn from P, then

Pr
(

lim
n→∞

dist(W∗n ,W∗N(P; ϵ)) = 0
)
= 1. (6.91)

Proof. See Appendix D.2.4.

Remark 16. Under the assumptions in Theorem 16, it may be possible that W∗N(Pn; ϵ) is empty

for some values of n. Nonetheless, under the same assumptions, W∗N(Pn; ϵ) is non-empty for n

sufficiently large. This fact can be easily derived from the continuity of the mapping ϵmin(·) which is

the content of Lemma 39 in Appendix D.2.4.

The following corollary follows directly from Theorem 16 and the compactness of W∗N(P; ϵ)

established in Lemma 40 in Appendix D.2.4. It shows that the limit of optimal ϵ-private mechanisms

is also an optimal ϵ-private mechanism.

Corollary 6. In addition to the assumptions in Theorem 16, assume that limn W∗n = W0 for some W0 ∈ WN .

Then, W0 ∈ W∗N(P; ϵ).

It is important to note that Theorem 16 does not imply that the sequence of optimal privacy

mechanisms (W∗n )∞
n=1 converges to a privacy mechanism. Indeed, it has been noticed in simulation

that a small perturbation to the joint distribution might lead to a big change to the optimal privacy

mechanism returned by some optimization algorithms. The following theorem, whose proof relies on

standard results from set-valued analysis [20], shows that given a sequence (Pn)∞
n=1 with limn Pn = P,

it is possible to choose W∗n ∈ W∗N(Pn; ϵ) such that (W∗n )∞
n=1 is convergent. However, we prove this

property only for a residual set which, by definition, is a countable intersection of dense open subsets

of Q ⊂ R|S|×|X |.

Theorem 17. Assume that conditions (C.1–3) hold true for a given closed set Q ⊆ P and a given N ∈N.

For any given ϵ ∈ R and any δ > 0, there exists a residual set Q′ ⊆ {Q ∈ Q : ϵmin(Q) + δ ≤ ϵ} which

satisfies that:
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For any joint distribution Q0 ∈ Q′, any sequence of joint distributions (Qn)∞
n=1 ⊂ {Q ∈ Q :

ϵmin(Q) + δ ≤ ϵ} with limn Qn = Q0, and any optimal privacy mechanism W∗0 ∈ W∗N(Q0; ϵ), there

exists a sequence of privacy mechanisms (W∗n )∞
n=1 such that W∗n ∈ W∗N(Qn; ϵ) for each n ∈ N and

limn W∗n = W∗0 .

Proof. See Appendix D.2.5.

Remark 17. Baire’s theorem states that any residual subset of a complete metric space is dense,

see, e.g., [236, Thm. 5.6]. In this sense, residual sets are considered to be big in topological terms.

However, residual sets might be negligible in measure theoretic terms, see, e.g., [101, Exercise 5.3.31].

6.5.1 Continuity and Compactness Conditions

In this section we show that probability of correctly guessing, f -information with f locally Lipschitz,

Arimoto’s mutual information of order α with α ∈ (1, ∞] satisfy conditions (C.1–3).

Probability of Correctly Guessing

We choose Q = P and Y = {1, . . . , N} with N ≥ |X |+ 1. Note that Q = P corresponds to the case

where no prior information about the true distribution P is available. Recall that, by definition,

Lc(Q, W) = ∑
y∈Y

max
s∈S ∑

x∈X
Q(s, x)W(x, y), (6.92)

Uc(Q, W) = ∑
y∈Y

max
x∈X ∑

s∈S
Q(s, x)W(x, y). (6.93)

Since the maximum and the sum of continuous functions are continuous functions as well, we have

that, for every Q ∈ P , the mappings Lc(Q, ·) and Uc(Q, ·) are continuous overWN . In [18], Asoodeh

et al. showed that Hc(Q; ·), the privacy-utility function associated to Lc and Uc, is continuous and

piecewise linear over3 [ϵmin(Q), ∞). Therefore condition (C.1) is satisfied. Furthermore, Lemma 15

shows that, for any Q1, Q2 ∈ P and W ∈ W ,

|Lc(Q1, W)−Lc(Q2, W)| ≤ ∥Q1 −Q2∥1, (6.94)

|Uc(Q1, W)−Uc(Q2, W)| ≤ ∥Q1 −Q2∥1, (6.95)

3Indeed, in this setting ϵmin(Q) = maxs ∑x Q(s, x).
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which implies that condition (C.2) is satisfied with CL = 1 and CU = 1. It was established in [18]

that, for every ϵ ≥ ϵmin(Q), there is always an optimal ϵ-private mechanism using at most |X |+ 1

symbols. As a consequence, condition (C.3) holds true as N ≥ |X |+ 1 by assumption.

f -Information with f Locally Lipschitz

Assume that the function f : [0, ∞)→ R is locally Lipschitz and convex with f (1) = 0. Given γ > 0,

we choose N ≥ |X |+ 1 and

Q =

{
Q ∈ P : γ ≤ min

s∈S ∑
x∈X

Q(s, x), γ ≤ min
x∈X ∑

s∈S
Q(s, x)

}
. (6.96)

In this case, the prior information about the true distribution P = PS,X comes in the form of the

assumption that the probability mass functions of S and X are bounded away from 0. Recall that, by

definition,

L f (Q, W) = ∑
s∈S

∑
y∈Y

PS(s)PY(y) f
(

PS,Y(s, y)
PS(s)PY(y)

)
, (6.97)

U f (Q, W) = ∑
x∈X

∑
y∈Y

PX(x)PY(y) f
(

PX,Y(x, y)
PX(x)PY(y)

)
, (6.98)

where S → X → Y is such that PS,X = Q and PY|X = W. Note that if Q ∈ Q, then, for all

(s, x, y) ∈ S ×X ×Y ,

max
{

PS,Y(s, y)
PS(s)PY(y)

,
PX,Y(x, y)

PX(x)PY(y)

}
≤ γ−1. (6.99)

Upon this fact, it is straightforward to verify that the mappings L f (Q, ·) and U f (Q, ·) are continuous

over WN . In [125], Hsu et al. established the continuity of H f (Q; ·) over [0, ∞). Hence, condition

(C.1) is satisfied. Recall the definitions of Kg,u and Lg,u in (6.40) and (6.41), respectively. Lemma 16

shows that, for any Q1, Q2 ∈ Q and W ∈ W ,

|L f (Q1, W)−L f (Q2, W)| ≤ (2K f ,γ−1 + (2γ−1 + 1)L f ,γ−1)∥Q1 −Q2∥1, (6.100)

|U f (Q1, W)−U f (Q2, W)| ≤ (2K f ,γ−1 + (2γ−1 + 1)L f ,γ−1)∥Q1 −Q2∥1, (6.101)

which implies that condition (C.2) is satisfied with

CL = CU = 2K f ,γ−1 + (2γ−1 + 1)L f ,γ−1 . (6.102)

For example, if f (x) = |x− 1|, then CL = CU ≤ 4γ−1 + 1; and if f (x) = x2− 1, then CL = CU ≤ 8γ−2.

As with probability of correctly guessing, there is always an optimal ϵ-private mechanism using at
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most |X |+ 1 symbols [125]. From this fact, condition (C.3) follows immediately.

Arimoto’s Mutual Information

Let α ∈ (1, ∞]. We choose N ≥ |X |+ 1 and Q = P , i.e., no prior information is assumed. As with

the previous information measures, the continuity of the mappings LA
α (Q, ·) and UA

α (Q, ·) is evident.

We denote the privacy-utility function by HA
α when both privacy leakage and utility are measured

using Arimoto’s mutual information of order α. Note that the graph of HA
α (Q; ·) corresponds to the

upper boundary of the set

A ≜
{
(LA

α (Q, W),UA
α (Q, W)) : W ∈ W

}
. (6.103)

More specifically, HA
α (Q; ϵ) = sup{u : (p, u) ∈ A, p ≤ ϵ}. Consider the transformation

(p, u) 7→
(∥∥∥ ∑

x∈X
Q(·, x)

∥∥∥
α
eαp/(α−1),

∥∥∥ ∑
s∈S

Q(s, ·)
∥∥∥

α
eαu/(α−1)

)
. (6.104)

It is straightforward to verify that this transformation is one-to-one, continuous, and monotone

coordinatewise. Using this transformation, it can be shown that (the upper boundary of) A is

homeomorphic to (the upper boundary of)

B ≜ {(ϕ(Q, W), ψ(Q, W)) : W ∈ W} , (6.105)

where ϕ(Q, W) ≜ ∑y∈Y ∥∑x∈X Q(·, x)W(x, y)∥α and ψ(Q, W) ≜ ∑y∈Y ∥∑s∈S Q(s, ·)W(·, y)∥α. By

the homogeneity of the α-norm, it can be verified that

ϕ(Q, [λ1W1, . . . , λKWK] =
K

∑
k=1

λkϕ(Q, Wk), (6.106)

whenever K ∈ N, W1, . . . , WK ∈ W , and λ1, . . . , λK ≥ 0 with ∑k λk = 1. A similar equality holds

for ψ. Therefore, B is a convex set and, as a consequence, its upper boundary is the graph of a

continuous function. Since the upper boundaries of A and B are homeomorphic, we conclude that

the mapping HA
α (Q; ·) is continuous. Therefore, condition (C.1) is satisfied. Also, Lemma 18 implies

that condition (C.2) is satisfied with CL =
2α

α− 1
|S|1−1/α and CU =

2α

α− 1
|X |1−1/α. Observe that

proving condition (C.3) with N ≥ |X |+ 1 is equivalent to show that any point in the upper boundary

of A can be written as (LA
α (Q, W),UA

α (Q, W)) for some W ∈ WN . Since A and B are homeomorphic,

the latter property can be established from an analogous property for B which in turn follows from

a minor adaptation of the argument in [294].
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Remark 18. Regarding condition (C.3), both [18] and [125] build upon the convex analysis argument

employed by Witsenhausen and Wyner in [294]. More specifically, they rely on an extension of

Carathéodory’s theorem, the so-called Fenchel-Eggleston theorem [89], in order to find a bound for

the size of the output alphabet of an optimal privacy mechanism.

6.6 Uniform Privacy Mechanisms

In this section we consider the scenario in which delivering privacy is the top priority for the privacy

mechanism designer. We introduce privacy mechanisms that, with a certain probability, guarantee

privacy for the true distribution despite having access only to an estimate of it. These mechanisms

are constructed in the following conceptual way. Recall that large deviations results show that,

with a certain probability, the true distribution is within some ℓ1 ball of the empirical distribution.

Consequently, if a mechanism guarantees privacy uniformly for every distribution within such an ℓ1

ball, it necessarily guarantees privacy for the true distribution with at least the same probability. In

this section, we prove that there is a well-defined notion of optimality for uniform privacy mechanisms

and that these optimal mechanisms can be approximated by appropriately chosen (non-uniform)

optimal privacy mechanisms as previously defined in (6.30).

In order to introduce uniform privacy mechanisms precisely, recall that inequality (6.27) shows

that, with probability at least 1− exp(|S| · |X | − nr2/2), the true distribution P is within the ℓ1 ball

of radius r centered at the empirical distribution P̂n,

Qr(P̂n) ≜ {Q ∈ Q : ∥Q− P̂n∥1 ≤ r}. (6.107)

Based on this observation, we consider uniform privacy mechanisms which guarantee privacy for

every joint distribution within Qr(P̂), where P̂ is any estimate of P. Despite the fact that P ∈ Qr(P̂)

with high probability, we do not know the true value of P. For this reason, we define optimal uniform

privacy mechanisms as those that achieve the best worst-case utility within Qr(P̂).

Definition 26. Let Q ⊂ P and N ∈ N. For P̂ ∈ Q, ϵ ≥ 0, and r ≥ 0, we define the set of uniform

privacy mechanisms for Qr(P̂) at ϵ as

DQ,N(P̂; ϵ, r) ≜
⋂

Q∈Qr(P̂)

{W ∈ WN : L(Q, W) ≤ ϵ} . (6.108)
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Furthermore, we define the set of optimal uniform privacy mechanisms for Qr(P̂) at ϵ as

W†
Q,N(P̂; ϵ, r) ≜ arg max

W∈DQ,N(P̂;ϵ,r)
Ur(P̂, W), (6.109)

where Ur(P̂, W) ≜ min
Q∈Qr(P̂)

U (Q, W).

Recall that, as defined in Remark 14, DN(Q; ϵ) = {W ∈ WN : L(Q, W) ≤ ϵ} is the set of all

privacy mechanisms inWN delivering an ϵ-privacy guarantee for Q. Thus,

DQ,N(P̂; ϵ, r) =
⋂

Q∈Qr(P̂)

DN(Q; ϵ) (6.110)

is the set of all privacy mechanisms in WN that deliver an ϵ-privacy guarantee uniformly for all

the distributions in Qr(P̂), i.e., all the distributions at a distance less than or equal to r from P̂. For

a given privacy mechanism W, Ur(P̂, W) quantifies the least utility U (Q, W) attained by W over

all the distributions in Qr(P̂). Thus, by definition, W†
Q,N(P̂; ϵ, r) is the set of all uniform privacy

mechanisms for Qr(P̂) at ϵ with the best worst-case utility.

The following lemma shows that Definition 26 is well-defined under conditions (C.1–2). Specif-

ically, it shows that the infimum defining Ur(P̂, W) and the supremum defining W†
Q,N(P̂; ϵ, r) are

attainable.

Lemma 22. Assume that conditions (C.1–2) hold true for a given closed set Q ⊆ P and a given N ∈ N.

Then

(i) the infimum inf{U (Q, W) : Q ∈ Qr(P̂)} is attainable for every W ∈ WN ;

(ii) the supremum sup{Ur(P̂, W) : W ∈ DQ,N(P̂; ϵ, r)} is attainable whenever DQ,N(P̂; ϵ, r) is not empty.

Proof. See Appendix D.3.1.

Observe that (ii) shows that optimal uniform privacy mechanisms do exists as long as DQ,N(P̂; ϵ, r)

is not empty. Nonetheless, their construction might be challenging as the construction of optimal

privacy mechanisms in the non-uniform sense, as defined in (6.30), is already non-trivial in most

cases. The following theorem shows that optimal privacy mechanism can be modified to deliver a

uniform privacy guarantee without incurring in a big cost in terms of utility. Throughout this section,

we consistently use W∗ to denote optimal privacy mechanisms, i.e., elements inW∗N as defined in

(6.84), and W† to denote their uniform counterparts as defined in (6.109).

132



Theorem 18. Assume that conditions (C.1–3) hold true for a given closed set Q ⊆ P and a given N ∈N. If

P ∈ Qr(P̂) and ϵ− CLr ≥ ϵmin(P̂), then

∅ ̸= DN(P̂; ϵ− CLr) ⊆ DQ,N(P̂; ϵ, r). (6.111)

Furthermore, for every W∗ ∈ W∗N(P̂; ϵ− CLr) and every W† ∈ W†
Q,N(P̂; ϵ, r),

U (P, W∗) ≥ U (P, W†)−
(
H(P̂; ϵ + CLr)−H(P̂; ϵ− CLr) + 2CUr

)
. (6.112)

Proof. See Appendix D.3.2.

Observe that (6.111) establishes that privacy mechanisms for P̂ at ϵ− CLr are, in fact, uniform

privacy mechanisms at ϵ. In other words, (6.111) shows that by imposing a slightly stronger privacy

requirement for P̂, we obtain uniform privacy mechanisms for Qr(P̂). Furthermore, under condition

(C.1),

lim
r↓0
(
H(P̂; ϵ + CLr)−H(P̂; ϵ− CLr) + 2CUr

)
= 0. (6.113)

Therefore, (6.112) shows that, when r is small, any optimal privacy mechanism for P̂ at ϵ− CLr

performs almost as well as any optimal uniform privacy mechanism for Qr(P̂) at ϵ. Of course, all

these conclusions hold as long as P ∈ Qr(P̂) but, as pointed out before, this is the case (with high

probability) in the large sample size regime.

Remark 19. Note that if H(P̂; ·) is Lipschitz continuous with Lipschitz constant L, then (6.112)

becomes

U (P, W∗) ≥ U (P, W†)− 2(CU + LCL)r. (6.114)

Observe that if H(P̂; ·) is a convex function differentiable at ϵ0 ≜ ϵmin(P̂), then L = H′(P̂; ϵ0). The

value of H′(P̂; ϵ0) is closely related with the notion of reverse strong data processing inequality [52],

see also [17].

Now we consider a specific example to illustrate the above results.

Example 8. Recall that Hc is the privacy-utility function associated to Lc and Uc as given in (6.35).

For ease of notation, we define

p#q ≜

(1− p)(1− q) (1− p)q

pq p(1− q)

 . (6.115)
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Let Q = {p#q : p ∈ [1/2, 1], q ∈ [0, 1− p]} and N ≥ 2. This selection of Q captures the case where

S ∼ Ber(p) with p ∈ [1/2, 1] and PX|S = BSC(q) with q ∈ [0, 1− p]. By Theorem 2 in [18], for all

Q = p#q ∈ Q,

Hc(Q; ϵ) = 1− 1− q
p− q

(p + q− 2pq) + ϵ
p + q− 2pq

p− q
, (6.116)

whenever ϵ ∈ [p, 1 − q]. In particular, Hc(Q; ·) is Lipschitz continuous with Lipschitz constant
p + q− 2pq

p− q
. Recall that, for probability of correctly guessing, CL = CU = 1 as established in

Section 6.5.1. Hence, under the assumptions of Theorem 18, (6.114) becomes

U (P, W∗) ≥ U (P, W†)− 2p̂(1− q̂)
p̂− q̂

r, (6.117)

where W∗ ∈ W∗N(P̂; ϵ − r) and W† ∈ W†
Q,N(P̂; ϵ, r) with P̂ ≜ p̂#q̂ ∈ Q. Furthermore, by taking

P̂ = P̂n and r = (2(4− log β)/n)1/2, inequality (6.27) implies that, with probability at least 1− β,

U (P, W∗) ≥ U (P, W†)− 2p̂(1− q̂)
p̂− q̂

√
2
n
(4− log β). (6.118)

We finish this section by studying some convergence properties of uniform privacy mechanism,

similar to those studied in Theorem 16. More specifically, the next theorem shows that although a

sequence (W†
n )

∞
n=1 with W†

n ∈ W†
Q,N(Pn; ϵ, rn) may not be convergent, the distance between each W†

n

andW∗N(P; ϵ) converges to zero as long as limn Pn = P and limn rn = 0. Furthermore, it also shows

that, under certain conditions, this convergence can be guaranteed almost surely for the empirical

distribution estimator.

Theorem 19. Assume that conditions (C.1–3) hold true for a given closed set Q ⊆ P and a given N ∈N. Let

ϵ ∈ R and P ∈ Q be given. If Pn ∈ Q with ∥Pn − P∥1 ≤ rn for each n ∈N, limn rn = 0, and ϵ > ϵmin(P),

then, for any sequence (W†
n )

∞
n=1 ⊂ WN such that W†

n ∈ W†
Q,N(Pn; ϵ, rn) for all n ≥ 1,

lim
n→∞

dist(W†
n ,W∗N(P; ϵ)) = 0. (6.119)

Furthermore, if Pn = P̂n is the empirical estimator obtained from n i.i.d. samples drawn from P and, for some

p > 1, rn ≥
√

2p log(n)
n for all n ≥ 1, then,

Pr
(

lim
n→∞

dist(W†
n ,W∗N(P; ϵ)) = 0

)
= 1. (6.120)

Proof. See Appendix D.3.3.

The following corollary follows immediately from Thereom 19 by taking P = Pn = P̂.
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Corollary 7. Assume that conditions (C.1–3) hold true for a given closed set Q ⊆ P and a given N ∈N. If

P̂ ∈ Q and ϵ > ϵmin(P̂), then

lim sup
r↓0

W†
Q,N(P̂; ϵ, r) ⊆ W∗N(P̂; ϵ), (6.121)

where

lim sup
r↓0

W†
Q,N(P̂; ϵ, r) ≜

{
W ∈ WN : lim inf

r↓0
dist

(
W,W†

Q,N(P̂; ϵ, r)
)
= 0

}
. (6.122)

Theorem 18 shows that in terms of performance, optimal privacy mechanisms approximate

optimal uniform privacy mechanisms in the small r regime. The previous corollary shows that, in the

same regime, optimal uniform privacy mechanisms are geometrically close to the set of optimal privacy

mechanisms. These two results evidence an intrinsic relation between optimal privacy mechanisms

and their uniform counterparts.

6.7 Numerical Experiments

We illustrate some of the results derived in this chapter through two numerical experiments. The

first experiment, conducted on a synthetic dataset, illustrates the convergence of the empirical

privacy-utility function and optimal privacy mechanisms to their corresponding limits as the sample

size increases. The second experiment, performed on a real-world dataset, displays the discrepancy

between the privacy-utility guarantees during the design and testing of a privacy mechanism.

6.7.1 Synthetic Datasets

Here we illustrate the convergence of the empirical privacy-utility function and optimal privacy

mechanisms as the sample size increases. The joint distribution matrix P, determined by Ps,x ≜ P(s, x),

is chosen to be

P =

0.42 0.18

0.16 0.24

 , (6.123)

and both privacy leakage and utility are measured using χ2-information, i.e., the f -information

associated to the function f (t) = (t− 1)2. For any given value of n, we randomly select n i.i.d. samples

{(si, xi)}n
i=1 drawn from the joint distribution P and compute the empirical distribution P̂n.

In Figure 6.2 (top left), we depict the privacy-utility function Hχ2(P; ·) and the empirical privacy-
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utility function Hχ2(P̂n; ·) for three different values of n. Note that the privacy-utility function of the

empirical distribution converges (pointwise) to the corresponding function for the true distribution,

i.e., for any given ϵ ≥ 0 we have that Hχ2(P̂n; ϵ) approaches Hχ2(P; ϵ) as n grows. This corroborates

the conclusion of Proposition 16 which establishes that, for any given ϵ ∈ R, H(·; ϵ) is continuous

over {Q ∈ Q : ϵmin(Q) < ϵ}. In Figure 6.2 (top right), we depict the corresponding optimal privacy

mechanisms. In order to visualize a privacy mechanism PY|X in the xy-plane, we let the x-axis

and y-axis to be the values of PY|X(0|0) and PY|X(1|1), respectively. Observe that optimal privacy

mechanisms are not unique. Hence, depending on the algorithm used to obtain such mechanisms, a

sequence of empirical optimal privacy mechanisms may not converge to a fixed mechanism. However,

as observed from Figure 6.2 (top right), the distance between any such sequence and the set of

optimal privacy mechanisms for the true distribution will necessarily converge to zero which echoes

Theorem 16.

Finally we scatter plot the largest (signed) gap, denoted by ∆n, between Hχ2(Pn; ·) and Hχ2(P; ·). In

particular, the absolute value of ∆n is equal to the uniform norm of the function Hχ2(Pn; ·)−Hχ2(P; ·),
i.e.,

|∆n| = sup
ϵ∈[0,∞)

|Hχ2(Pn; ϵ)−Hχ2(P; ϵ)|. (6.124)

We depict the value of ∆n in Figure 6.2 (bottom). As shown, when the number of samples increases,

|∆n| tends to decrease which illustrates the uniform convergence established in Corollary 5. Due

to the mismatch between the empirical and true distributions, privacy and utility might be over or

under-estimated, leading to the variable sign of ∆n.

6.7.2 ProPublica’s COMPAS Recidivism Dataset

We now illustrate Theorems 12 and 14 in Section 6.4 through ProPublica’s COMPAS dataset [10],

which contains the criminal history, jail and prison time, demographics and COMPAS risk scores for

defendants in Broward County from 2013 and 2014. We process the original dataset by dropping

records with missing information and quantizing some of the interest variables. Our final dataset

contains 5278 records. We choose the private variable (S): Race ∈ {Caucasian, African-American}; the

useful variable (X): PriorCounts ∈ {0, 1− 3,> 3} and AgeCategory ∈ {< 25, 25− 45,> 45}. Hence, the

size of support sets are |S| = 2 and |X | = 9.

Given n ∈N, we choose n records from the dataset as our training set and another n different
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Figure 6.2: Both privacy leakage and utility are measured using the f -information with f (t) = (t − 1)2. Top left:
privacy-utility function Hχ2 (P; ·) and empirical privacy-utility function Hχ2 (P̂n; ·). Top right: corresponding optimal
privacy mechanisms for ϵ = 0.05. Bottom: largest (signed) difference between Hχ2 (Pn; ·) and Hχ2 (P; ·).

records as our testing set. We use probability of correctly guessing to measure both privacy and

utility. We compute the empirical distribution P̂n,train based on the training set and let Wn be the

privacy mechanism that solves the following optimization problem:

max
W∈WR

Uc(P̂n,train, W) (6.125)

s.t. Lc(P̂n,train, W) ≤ 0.65, (6.126)

where WR denotes the set of randomized response mechanisms [147, 291], i.e., the set of all privacy

mechanisms W with output alphabet X such that, for some ρ ≥ 0,

W(i, j) =


eρ

eρ + |X | − 1
if i = j,

1
eρ + |X | − 1

if i ̸= j.
(6.127)
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Figure 6.3: Both privacy leakage and utility are measured using probability of correctly guessing. Left: discrepancy
between utility guarantees for the training and testing sets. Right: discrepancy between privacy guarantees for the training
and testing sets. In both pictures the theoretical upper bound in (6.130) is shown in red.

Then, we let P̂n,test be the empirical distribution of the testing set and compute the privacy-utility

guarantees attained by Wn for this distribution. Finally, we evaluate the discrepancy between the

privacy-utility guarantees provided for P̂n,train and P̂n,test:

∆L,n ≜ |Lc(P̂n,test, Wn)−Lc(P̂n,train, Wn)|, (6.128)

∆U,n ≜ |Uc(P̂n,test, Wn)−Uc(P̂n,train, Wn)|. (6.129)

By the triangle inequality and Theorem 12, with probability at least 1− β, these two discrepancies

are upper bounded by

UpperBoundn ≜ 2

√
2
n
(|S| · |X | − log β). (6.130)

Figure 6.3 depicts the discrepancies ∆L,n and ∆U,n, as functions of n, along with the upper bound

UpperBoundn for β = 10−1. Observe that when number of samples increases, the discrepancy

between the privacy-utility guarantees tends to decrease.

To further illustrate our results, we perform a similar experiment using Arimoto’s mutual

information of order 2. Specifically, we compute the privacy mechanism Wn by solving the following

optimization problem:

max
W∈WZ

UA
2 (P̂n,train, W) (6.131)

s.t. LA
2 (P̂n,train, W) ≤ 0.05, (6.132)

where WZ denotes the set of privacy mechanisms W with output alphabet X such that, for some
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Figure 6.4: Both privacy leakage and utility are measured using Arimoto’s mutual information of order 2. Left: discrepancy
between utility guarantees for the training and testing sets. Right: discrepancy between privacy guarantees for the training
and testing sets. The theoretical upper bounds, in (6.134) and (6.135) respectively, are shown in red.

x̄ ∈ X and ζ ≥ 0,

W(i, j) =


1 if i = j = x̄,

1− ζ if i = j ̸= x̄,

ζ if i ̸= x̄, j = x̄.

(6.133)

In the binary case, WZ is nothing but the collection of Z-channels. It has been proved [18] that

these channels are capable to achieve optimal privacy-utility trade-offs in some cases. Let ∆L,n

(resp. ∆U,n) be the discrepancy between the privacy (resp. utility) guarantees for P̂n,train and P̂n,test.

By Theorem 14, with probability at least 1− β, ∆L,n and ∆U,n are upper bounded by

Privacy:UpperBoundn ≜ 8

√
2
n
(|S| · |X | − log β) · |S|, (6.134)

Utility:UpperBoundn ≜ 8

√
2
n
(|S| · |X | − log β) · |X |, (6.135)

respectively. Figure 6.4 depicts the discrepancies ∆L,n and ∆U,n, as functions of n, along with their

corresponding upper bounds for β = 10−1.

6.8 Conclusion

In this chapter, we analyzed the effect of a limited sample size on the disclosure of data under

privacy constraints. We considered a setting where data is released upon observing non-private

features correlated with a set of private features. We evaluated privacy and utility using one out of
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five of the most commonly used information leakage and utility measures in information-theoretic

privacy: probability of correctly guessing, f -information, Arimoto’s mutual information, Sibson’s

mutual information, and maximal α-leakage.

The effect of a limited sample size was assessed via probabilistic upper bounds for the difference

between the privacy-utility guarantees for the empirical and true distributions. An important feature

of these bounds is that they are completely independent of the privacy mechanism at hand. On a

technical level, the proofs of these bounds depend on large deviations results already available in

the literature and continuity properties of information leakage measures established in this work.

Furthermore, we have established new continuity properties of privacy-utility functions. Using these

properties, we have shown that the limit of a convergent sequence of optimal privacy mechanisms is

an optimal privacy mechanism itself.

In order to mitigate the effect of a limited sample size on the privacy guarantees delivered

to the true distribution, we introduced the notion of uniform privacy mechanisms. By definition,

these mechanisms provide a specific privacy guarantee for every distribution in a given subset

of the probability simplex. In particular, when this subset is a neighborhood of the empirical

distribution, large deviations results imply that privacy is guaranteed for the true distribution

with high probability. While the construction of optimal uniform privacy mechanisms might be

challenging, we proved that these mechanisms can be approximated in a natural way by optimal

privacy mechanisms in the non-uniform sense. More specifically, we have proved that an optimal

privacy mechanism for the empirical distribution delivers a slightly weaker privacy guarantee for

a whole neighborhood of the empirical distribution and performs almost as well as any optimal

uniform privacy mechanism. By establishing convergence results regarding optimal uniform privacy

mechanisms, we have further exhibited the intrinsic relation between optimal privacy mechanisms

and their uniform counterparts.

While this work predominantly focused on large deviations bounds, the continuity properties

derived in this paper can be applied together with contemporary results to derive similar upper

bounds in other estimation frameworks, e.g., ℓ1 min-max estimation.
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Chapter 7

Conclusion and Future Work

In this thesis, we established an information-theoretic foundation of trustworthy ML. We proved

rigorous performance guarantees for ML models and developed protocols for the responsible use

of data and ML algorithms. We derived generalization bounds to understand why complex ML

models often generalize well in practice. We developed theory that delineates a fundamental limit of

algorithmic fairness and privacy. The theory also provided design guidelines for practitioners who

deploy ML technology in applications of individual-level consequences.

Understanding the Generalization of Complex ML Models

In Chapter 3, we investigated how the data distribution and optimization method influence the

generalization of ML models. Specifically, we derived distribution-dependent generalization bounds

for noisy iterative algorithms. The key step in our proof was to build a connection between noisy

iterative algorithms and additive noise channels found in information theory. This connection

enabled us to leverage the properties of additive noise channels for studying the generalization of

noisy iterative algorithms.

There are several open questions that deserve further investigation. For example, we proved that

our generalization bounds could be tightened if the output of the algorithm is the last iterate. Our

analysis was inspired by a line of works on privacy amplification by iteration [19, 23, 99]. On the

other hand, there are other ways to amplify privacy, such as subsampling [59] and shuffling [90]. It

would be interesting to understand if the these methods can improve the algorithmic generalization.
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More broadly, it would be interesting to investigate the behavior of neural networks in the

overparameterized regime. The uniform convergence results from statistical learning theory suggest

that models that perfectly fit the training data will exhibit a poor generalization performance.

Although these results are useful for understanding classical ML, they fail to explain the behavior of

deep learning methods in the overparameterized regime where models can interpolate all training

data and achieve perfect training accuracy. In this regime, prediction models often exhibit “benign”

overfitting [28]—they generalize well to unseen data while overfitting the training data.

In the overparameterized regime, there are many solutions to the empirical risk minimization,

each having distinct generalization properties. In this case, gradient-based optimization algorithms

introduce a bias in selecting a minimizer with certain properties. For example, gradient descent for

training a linear model with squared error loss converges to a solution with minimal L2 norm. It

would be interesting to see if the information-theoretic framework developed in this thesis sheds

light on understanding implicit regularization. On the other hand, to explain how the optimization

methods influence the generalization of neural networks, it would be helpful to develop a unified

framework that yields generalization bounds for all kinds of optimization methods.

The classical learning theory suggests that the test error exhibits a U-shaped curve with respect

to model complexity due to the bias-variance trade-off. However, this phenomenon only occurs in

the underparameterized regime. When it comes to the overparameterized regime, the test error

decreases again with the model complexity and highly overparameterized models often achieve a

better test accuracy than the best underparameterized model. It would be interesting to investigate

this research direction and propose new model complexity measures for explaining the double

descent phenomenon.

Ensuring Algorithmic Fairness and Privacy

We investigated algorithmic fairness and privacy in Chapter 4–6. We provided conditions to ensure

the fair use of group attributes and characterized the fundamental limit of privacy-utility trade-offs.

We studied the robustness of information leakage measures and established the statistical consistency

of “optimal” privacy mechanisms. Our theory was not only technically relevant, but it also inspired

new algorithms for correcting biased models and for designing privacy mechanisms.

There are several open questions that deserve further exploration. First, we proved that the differ-
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ence in underlying data distributions between groups, the number of samples, and the hypothesis

class could all influence the effect of splitting classifiers. Nonetheless, we believe that there are more

factors that play an important role in determining this effect. For example, a group-blind classifier

may perform worse on minority groups due to unbalanced samples in the training process and

using split classifiers could potentially reconcile this issue. In a similar vein, the lack of sample

diversity (i.e., training datasets do not contain enough samples from minority groups) could affect

the performance and generalization of ML models for minority groups. Hence, it is crucial to

characterize the impact of sample size and diversity on detecting and reducing discrimination.

Ensuring fairness requires being able to detect discrimination in the first place. However, a major

challenge for testing group fairness is that the available data for conducting the test are limited but

the number of groups can grow exponentially with the number of group attributes. If we conduct an

independent hypothesis test for each group, then the probability that at least one null hypothesis

is wrongly rejected can increase rapidly. It would be interesting to design statistical tests to verify

discrimination that account for the multiplicity issue. These tests will be extremely useful to audit

discrimination in ML models and are currently missing in the literature.
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Appendix A

Appendix to Chapter 3

A.1 Proofs for Section 3.4

A.1.1 Proof of Lemma 7

Lemma 7 follows from a slight tweak of the proof of Theorem 4 in Polyanskiy and Wu [219].

Proof. First, we choose a coupling PX,X′ , which has marginals PX and PX′ . The probability distribution

of X + mN can be written as the convolution of PX and PmN . Specifically,

dPX+mN(y) =
∫

x∈X
dPmN(y− x)dPX(x) =

∫
x∈X

∫
x′∈X

dPx+mN(y)dPX,X′(x, x′).

Similarly, we have

dPX′+mN(y
′) =

∫
x∈X

∫
x′∈X

dPx′+mN(y
′)dPX,X′(x, x′).

Since the mapping (P, Q) → D f (P∥Q) is convex [see Theorem 6.1 in 221, for a proof], Jensen’s

inequality yields

D f (PX+mN∥PX′+mN) ≤
∫

x∈X

∫
x′∈X

D f (Px+mN∥Px′+mN)dPX,X′(x, x′)

= E
[
C f (X, X′; m)

]
, (A.1)

where the last step follows from the definition. The left-hand side of (A.1) only relies on the marginal

distributions of X and X′, so taking the infimum on both sides of (A.1) over all couplings PX,X′ leads

to the desired conclusion.
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A.1.2 Proof of Table 3.1

First, we derive a useful property of C f (x, y; m) in the following lemma, which will be used for

computing the closed-form expressions in Table 3.1.

Lemma 23. For any z ∈ Rd and a > 0, the function C f (x, x′; m) in (3.15) satisfies

C f (ax + z, ax′ + z; m) = C f

(
x, x′;

m
a

)
, C f (x, x′; m) = C f (−x′,−x; m).

Proof. For simplicity, we assume that N is a continuous random variable in Rd with probability

density function (PDF) p(w). Then the PDFs of ax + z + mN and ax′ + z + mN are

1
md · p

(
w− ax− z

m

)
and

1
md · p

(
w− ax′ − z

m

)
.

By definition,

C f (ax + z, ax′ + z; m) = D f (Pax+z+mN∥Pax′+z+mN)

=
1

md

∫
Rd

p
(

w− ax′ − z
m

)
f

 p
(w−ax−z

m
)

p
(

w−ax′−z
m

)
dw. (A.2)

Let v = (w− z)/a. Then (A.2) is equal to

ad

md

∫
Rd

p
(

v− x′

m/a

)
f

 p
(

v−x
m/a

)
p
(

v−x′
m/a

)
dv = C f

(
x, x′;

m
a

)
.

Therefore, C f (ax + z, ax′ + z; m) = C f
(
x, x′; m

a
)
. By choosing a = 1 and z = −x − x′, we have

C f (−x′,−x; m) = C(x, x′; m).

Next, we derive closed-form expressions (or upper bounds) for δ(A, m) in Table 3.1.

Proof. The closed-form expression of δ(A, m) for uniform distribution can be naturally obtained

from its definition so we skip the proof. The closed-form expressions for standard multivariate

Gaussian distribution and standard univariate Laplace distribution can be found at Polyanskiy

and Wu [219] and Asoodeh et al. [19]. Hence, in what follows, we provide an upper bound for

δ(A, m) when N follows a standard multivariate Laplace distribution. For a given positive number

A and a random variable N which follows a standard multivariate Laplace distribution, consider the
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following optimization problem:

sup
∥v∥1≤A

DTV (PN∥Pv+N) = sup
∥v∥1≤A

E

[(
1− exp(−∥N − v∥1)

exp(−∥N∥1)

)
I∥N−v∥1≥∥N∥1

]
.

By exchanging the supremum and the expectation, we have

sup
∥v∥1≤A

DTV (PN∥Pv+N) ≤ E

[
sup
∥v∥1≤A

{(
1− exp(−∥N − v∥1)

exp(−∥N∥1)

)
I∥N−v∥1≥∥N∥1

}]
. (A.3)

Note that

sup
∥v∥1≤A

{(
1− exp(−∥N − v∥1)

exp(−∥N∥1)

)
I∥N−v∥1≥∥N∥1

}

= 1− exp

(
− sup
∥v∥1≤A

{∥N − v∥1 − ∥N∥1}
)

= 1− exp(−A).

Substituting this equality into (A.3) gives

sup
∥x−x′∥1≤A

DTV (Px+N∥Px′+N) = sup
∥v∥1≤A

DTV (PN∥Pv+N) ≤ 1− exp(−A),

which leads to δ(A, 1) ≤ 1− exp(−A). Finally, we have

δ(A, m) = δ

(
A
m

, 1
)
≤ 1− exp

(
−A

m

)
.

Finally, we derive closed-form expressions (or upper bounds) for C f (x, x′; m) in Table 3.1.

Proof. By Lemma 23, we have

CKL(x, x′; m) = CKL

(
0,

x′ − x
m

; 1
)

.

We denote (x′ − x)/m by v. Since all the coordinates of N = (N1 · · · , Nd) are mutually independent,

PN = PN1 · · · PNd and Pv+N = Pv1+N1 · · · Pvd+Nd . By the chain rule of KL-divergence, we have

CKL(x, x′; m) = DKL(PN∥Pv+N) =
d

∑
i=1

DKL(PNi∥Pvi+Ni ). (A.4)

Hence, we only need to calculate DKL(PN∥Pv+N) for a constant v ∈ R and a random variable N ∈ R.
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(1) If N follows a standard Gaussian distribution, then

DKL(PN∥Pv+N) = E

[
log

exp(−N2/2)
exp(−(N − v)2/2)

]
=

1
2

E
[
(N − v)2 − N2

]
=

v2

2
.

Substituting this equality into (A.4) gives

CKL(x, x′; m) =
∥v∥2

2
2

=
∥x− x′∥2

2
2m2 ,

where the last step is due to the definition of v.

(2) If N follows a standard Laplace distribution, then

DKL(PN∥Pv+N) = E

[
log

exp(−|N|)
exp(−|N − v|)

]
= |v|+ exp(−|v|)− 1.

Substituting this equality into (A.4) gives

CKL(x, x′; m) =
d

∑
i=1
|vi|+ exp(−|vi|)− 1 =

∥x− x′∥1

m
+

d

∑
i=1

(
exp

(
−|xi − x′i |

m

)
− 1
)

≤ ∥x− x′∥1

m
.

Similarly, by Lemma 23, we have

Cχ2(x, x′; m) = Cχ2

(
0,

x′ − x
m

; 1
)

.

We denote (x′ − x)/m by v. By the property of χ2-divergence [see Section 2.4 in 266], we have

Cχ2(x, x′; m) = Dχ2
N
(PN∥Pv+N) =

d

∏
i=1

(
1 + Dχ2

N
(PNi∥Pvi+Ni )

)
− 1. (A.5)

Hence, we only need to calculate Dχ2
N
(PN∥Pv+N) for v ∈ R and N ∈ R.

(1) If N follows a standard Gaussian distribution, then

Dχ2
N
(PN∥Pv+N) = E

[
exp(−N2/2)

exp(−(N − v)2/2)

]
− 1

= exp(v2/2)E [exp(−vN)]− 1 = exp(v2)− 1.

Substituting this equality into (A.5) gives

Cχ2(x, x′; m) = exp(∥v∥2
2)− 1 = exp

(
∥x− x′∥2

2
m2

)
− 1.
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(2) If N follows a standard Laplace distribution, then

Dχ2
N
(PN∥Pv+N) = E

[
exp(−|N|)

exp(−|N − v|)

]
− 1

=
2
3

exp(|v|) + 1
3

exp(−2|v|)− 1.

Substituting this equality into (A.5) gives

Cχ2(x, x′; m) =
d

∏
i=1

(
2
3

exp
( |xi − x′i |

m

)
+

1
3

exp
(−2|xi − x′i |

m

))
− 1

≤ exp
(∥x− x′∥1

m

)
− 1.

Finally, we use Pinsker’s inequality [see Theorem 4.5 in 297, for a proof] for proving an upper bound

of CTV(x, x′; m):

CTV(x, x′; m) = DTV (Px+mN∥Px′+mN)

≤
√

DKL (Px+mN∥Px′+mN)

2

=

√
CKL(x, x′; m)

2
.

Hence, any upper bound of CKL(x, x′; m) can be naturally translated into an upper bound for

CTV(x, x′; m). This is how we obtain the upper bounds of CTV(x, x′; m) under Gaussian or Laplace

distribution in Table 3.1. On the other hand, if N follows a uniform distribution on [−1, 1] ⊆ R, by

Lemma 23 we have

CTV(x, x′; m) = CTV

(
0,

x′ − x
m

; 1
)
= min

{
1,
∣∣∣∣ x− x′

2m

∣∣∣∣} .

Note that in this case x, x′ ∈ R so we write them as x, x′.

Remark 20. We used Pinsker’s inequality for deriving an upper bound of CTV(x, x′; m) in the above

proof. One can potentially tighten this bound by exploring other f -divergence inequalities [see e.g.,

Eq. 4 in 242].
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A.2 Proofs for Section 3.5

A.2.1 Proof of Theorem 2

Proof. Combining Lemma 8 and 9 together leads to an upper bound of I f (WT ; Zi) for any data point

Zi used at the t-th iteration:

I f (WT ; Zi) ≤ E

[
C f

(
g(Wt−1, Z), g(Wt−1, Z̄);

mtbt

ηt

)]
·

T

∏
t′=t+1

δ(D + 2ηt′K, mt′). (A.6)

Additionally, if the loss ℓ(w, Z) is σ-sub-Gaussian for all w ∈ W , Lemma 5 and Assumption 1

altogether yield

∣∣E [Lµ(WT)− LS(WT)
]∣∣ ≤ 1

n

n

∑
i=1

√
2σ2 I(WT ; Zi)

=
1
n

T

∑
t=1

∑
i∈Bt

√
2σ2 I(WT ; Zi). (A.7)

Substituting (A.6) into (A.7) yields the following upper bound of the expected generalization gap:

√
2σ

n

T

∑
t=1

∑
i∈Bt

√√√√E

[
CKL

(
g(Wt−1, Z), g(Wt−1, Z̄);

mtbt

ηt

)]
·

T

∏
t′=t+1

δ(D + 2ηt′K, mt′)

=

√
2σ

n

T

∑
t=1

bt

√√√√E

[
CKL

(
g(Wt−1, Z), g(Wt−1, Z̄);

mtbt

ηt

)]
·

T

∏
t′=t+1

δ(D + 2ηt′K, mt′).

Similarly, we can obtain another two generalization bounds using Lemma 5 and the upper bound in

(A.6).

A.3 Proofs for Section 3.6

A.3.1 Proof of Proposition 1 and 2

In the setting of DP-SGD, the three generalization bounds in Theorem 2 become
√

2σ

n

T

∑
t=1

bt

√
E [CKL (g(Wt−1, Z), g(Wt−1, Z̄); bt)] · (δ(D + 2ηK, η))T−t (A.8)

where σ is the sub-Gaussian constant;

A
n

T

∑
t=1

btE [CTV (g(Wt−1, Z), g(Wt−1, Z̄); bt)] · (δ(D + 2ηK, η))T−t (A.9)
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where A is an upper bound of the loss function; and

σ

n

T

∑
t=1

bt

√
E
[
Cχ2 (g(Wt−1, Z), g(Wt−1, Z̄); bt)

]
· (δ(D + 2ηK, η))T−t (A.10)

where σ ≜
√

Var (ℓ(WT ; Z)).

Proof. We prove Proposition 2 first.

• If the additive noise follows a standard multivariate Gaussian distribution, Table 3.1 shows that

δ(D + 2ηK, η) = 1− 2Φ̄
(

D + 2ηK
2η

)
, (A.11)

E [CKL (g(Wt−1, Z), g(Wt−1, Z̄); bt)] =
1

2b2
t

E
[
∥g(Wt−1, Z)− g(Wt−1, Z̄)∥2

2

]
. (A.12)

We introduce a constant vector e whose value will be specified later. Since ∥a− b∥2
2 ≤ 2∥a∥2

2 +

2∥b∥2
2, we have

1
2b2

t
E
[
∥g(Wt−1, Z)− g(Wt−1, Z̄)∥2

2

]
≤ 1

b2
t

(
E
[
∥g(Wt−1, Z)− e∥2

2

]
+ E

[
∥g(Wt−1, Z̄)− e∥2

2

])
=

2
b2

t
E
[
∥g(Wt−1, Z)− e∥2

2

]
, (A.13)

where the last step is because Wt−1 is independent of (Z, Z̄) and Z, Z̄ follow the same distribution.

By choosing the constant vector e = E [g(Wt−1, Z)], we have

E
[
∥g(Wt−1, Z)− e∥2

2

]
= Var (g(Wt−1, Z)) . (A.14)

Combining (A.12–A.14) gives

E [CKL (g(Wt−1, Z), g(Wt−1, Z̄); bt)] ≤
2
b2

t
Var (g(Wt−1, Z)) . (A.15)

Substituting (A.11), (A.15) into (A.8) leads to the generalization bound in (3.37).

• Similarly, Table 3.1 shows for Gaussian noise

E [CTV (g(Wt−1, Z), g(Wt−1, Z̄); bt)] ≤
1

2bt
E [∥g(Wt−1, Z)− g(Wt−1, Z̄)∥2] . (A.16)
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Furthermore, by the triangle inequality,

1
2bt

E [∥g(Wt−1, Z)− g(Wt−1, Z̄)∥2]

≤ 1
2bt

(E [∥g(Wt−1, Z)− e∥2] + E [∥g(Wt−1, Z̄)− e∥2])

=
1
bt

E [∥g(Wt−1, Z)− e∥2] . (A.17)

By choosing the constant vector e = E [g(Wt−1, Z)] and combining (A.16) with (A.17), we have

E [CTV (g(Wt−1, Z), g(Wt−1, Z̄); bt)] ≤
1
bt

E [∥g(Wt−1, Z)− e∥2] . (A.18)

Substituting (A.11), (A.18) into (A.9) leads to the generalization bound in (3.38).

• Finally, Table 3.1 shows for Gaussian noise

E
[
Cχ2 (g(Wt−1, Z), g(Wt−1, Z̄); bt)

]
= E

[
exp

(
∥g(Wt−1, Z)− g(Wt−1, Z̄)∥2

2
b2

t

)]
− 1. (A.19)

The Cauchy-Schwarz inequality implies that

E

[
exp

(
∥g(Wt−1, Z)− g(Wt−1, Z̄)∥2

2
b2

t

)]

≤ E

[
exp

(
2∥g(Wt−1, Z)− e∥2

2
b2

t

)
exp

(
2∥g(Wt−1, Z̄)− e∥2

2
b2

t

)]

≤

√√√√E

[
exp

(
4∥g(Wt−1, Z)− e∥2

2
b2

t

)]
E

[
exp

(
4∥g(Wt−1, Z̄)− e∥2

2
b2

t

)]

= E

[
exp

(
4∥g(Wt−1, Z)− e∥2

2
b2

t

)]
. (A.20)

By choosing the constant vector e = E [g(Wt−1, Z)] and combining (A.19) with (A.20), we have

E
[
Cχ2 (g(Wt−1, Z), g(Wt−1, Z̄); bt)

]
≤ E

[
exp

(
4∥g(Wt−1, Z)− e∥2

2
b2

t

)]
− 1. (A.21)

Since for any x ≥ 0 and b ≥ 1,

exp
( x

b

)
− 1 ≤ exp(x)− 1

b
,

the inequality in (A.21) can be further upper bounded as

E
[
Cχ2 (g(Wt−1, Z), g(Wt−1, Z̄); bt)

]
≤ 1

b2
t

(
E
[
exp

(
4∥g(Wt−1, Z)− e∥2

2

)]
− 1
)

. (A.22)

169



Substituting (A.11), (A.22) into (A.10) leads to the generalization bound in (3.39).

By a similar analysis, we can prove the generalization bounds in Proposition 1 for the Laplace

mechanism.

A.3.2 Proof of Proposition 3

Proof. Within the t-th global update, we can rewrite the local updates conducted by the client k ∈ St

as follows. The parameter is initialized by Wk
t,0 = Wt−1 and for j ∈ [M],

Uk
t,j = Wk

t,j−1 − η · g
(

Wk
t,j−1, {Zk

i }i∈[b]
)

(A.23a)

Vk
t,j = Uk

t,j + η · N (A.23b)

Wk
t,j = ProjW

(
Vk

t,j

)
(A.23c)

where {Zk
i }i∈[b] are drawn independently from the data distribution µk and N ∼ N(0, Id). If a data

point Zk
i is used at the t-th global update, j-th local update, then the following Markov chain holds:

Zk
i → {Uk

t,j}k∈St → {Vk
t,j}k∈St → {Wk

t,j}k∈St → · · · → {Wk
t,M}k∈St︸ ︷︷ ︸

local

→Wt︸ ︷︷ ︸
global

→ · · · →WT

Hence, following a similar analysis in the proof of Lemma 8, we have

T(WT ; Zk
i ) ≤ qM(T−t) · T(Wt; Zk

i )

≤ q(M−j)+M(T−t) · T({Wk
t,j}k∈St ; Zk

i ), (A.24)

where the constant q is defined as

q ≜ 1− 2Φ̄

(√
C(D + 2ηK)

2η

)
.

Analogous to the proof of Lemma 9, we have

T({Wk
t,j}k∈St ; Zk

i ) ≤
1
b

E
[
∥g(Wk

t,j−1, Zk)− e∥2

]
(A.25)

where e ≜ E
[

g(Wk
t,j−1, Zk)

]
. Combining (A.24), (A.25) with the T-information bound in Lemma 5

yields the desired generalization bound for the k-th client.
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A.3.3 Proof of Proposition 4

We first present the following lemma whose proof follows by using the technique in Section II. E of

Guo et al. [115].

Lemma 24. Let X be a random variable which is independent of N ∼ N(0, Id). Then for any m > 0 and

deterministic function f

I( f (X) + mN; X) ≤ 1
2m2Var ( f (X)) . (A.26)

More generally, if Z is another random variable which is independent of N, then for any fixed z

I( f (X) + mN; X | Z = z) ≤ 1
2m2Var ( f (X) | Z = z) . (A.27)

Proof. By the property of mutual information [see Theorem 2.3 in 221],

I( f (X) + mN; X) = I
(

f (X)− e
m

+ N; X
)

(A.28)

where e ≜ E [ f (X)]. We denote

g(x) ≜
f (x)− e

m
. (A.29)

The golden formula [see Theorem 3.3 in 221, for a proof] yields

I (g(X) + N; X) = DKL

(
Pg(X)+N|X∥PN |PX

)
−DKL

(
Pg(X)+N∥PN

)
≤ DKL

(
Pg(X)+N|X∥PN |PX

)
. (A.30)

Furthermore, since X and N are independent, we have

DKL

(
Pg(X)+N|X=x∥PN

)
= DKL

(
Pg(x)+N∥PN

)
=
∥g(x)∥2

2
2

,

where the last step is due to the closed-form expression of the KL-divergence between two Gaussian

distributions. Finally, by the definition of conditional divergence, we have

DKL

(
Pg(X)+N|X∥PN |PX

)
=

1
2

E
[
∥g(X)∥2

2

]
=

1
2m2Var ( f (X)) , (A.31)

where the last step is due to the definition of g in (A.29). Combining (A.28–A.31) leads to the desired

conclusion. Finally, it is straightforward to obtain (A.27) by conditioning on Z = z and repeating our

above derivations.
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Next, we present the second lemma which will be used for proving Proposition 4.

Lemma 25. If the loss function ℓ(w, Z) is σ-sub-Gaussian under Z ∼ µ for all w ∈ W , the expected

generalization gap of the SGLD algorithm can be upper bounded by
√

2σ

2n

m

∑
j=1

√
∑

t∈Tj

βtηt · Var
(
∇w ℓ̂(Wt−1, Z̄j)

)
,

where the set Tj contains the indices of iterations in which the mini-batch Sj is used and the variance is over

the randomness of (Wt−1, Z̄j) ∼ PWt−1,Z̄j
with Z̄j being any data point in the mini-batch Sj.

Proof. We denote Z(k) ≜ (Z1, · · · , Zk) for k ∈ [n] and W(t) ≜ (W1, · · · , Wt) for t ∈ [T]. For simplicity,

in what follows we only provide an upper bound for I(W; Zn). Since W is a function of W(T) =

(W1, · · · , WT), the data processing inequality yields

I(W; Zn) ≤ I(W(T); Zn) ≤ I(W(T), Z(n−1); Zn). (A.32)

By the chain rule,

I(W(T), Z(n−1); Zn) = I(WT ; Zn |W(T−1), Z(n−1)) + I(W(T−1), Z(n−1); Zn). (A.33)

Let w = (w1, · · · , wT−1) and z = (z1, · · · , zn−1) be any two vectors. If Zn is not used at the T-th

iteration, without loss of generality we assume that the data points Z1, · · · , Zb are used in this

iteration. Then

I(WT ; Zn |W(T−1) = w, Z(n−1) = z)

= I

(
wt−1 −

ηT
b

b

∑
i=1
∇w ℓ̂(wT−1, zi) +

√
2ηT
βT

N; Zn |W(T−1) = w, Z(n−1) = z

)

= I
(

N; Zn |W(T−1) = w, Z(n−1) = z
)

= 0. (A.34)

On the other hand, if Zn is used at the T-th iteration, without loss of generality we assume that the
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other b− 1 data points which are also used in this iteration are Z1, · · · , Zb−1. Then

I(WT ; Zn |W(T−1) = w, Z(n−1) = z)

= I

(
wt−1 −

ηT
b

(
b−1

∑
i=1
∇w ℓ̂(wT−1, zi) +∇w ℓ̂(wT−1, Zn)

)
+

√
2ηT
βT

N; Zn |W(T−1) = w, Z(n−1) = z

)

= I

(
−ηT

b
∇w ℓ̂(wT−1, Zn) +

√
2ηT
βT

N; Zn |W(T−1) = w, Z(n−1) = z

)
. (A.35)

By Lemma 24, we have

I

(
−ηT

b
∇w ℓ̂(wT−1, Zn) +

√
2ηT
βT

N; Zn |W(T−1) = w, Z(n−1) = z

)

≤ βTηT

4b2 Var
(
∇w ℓ̂(wT−1, Zn) |W(T−1) = w, Z(n−1) = z

)
. (A.36)

Substituting (A.36) into (A.35) gives

I(WT ; Zn |W(T−1) = w, Z(n−1) = z) ≤ βTηT

4b2 Var
(
∇w ℓ̂(wT−1, Zn) |W(T−1) = w, Z(n−1) = z

)
.

Taking expectation w.r.t. (W(T−1), Z(n−1)) on both sides of the above inequality and using the law of

total variance lead to

I(WT ; Zn |W(T−1), Z(n−1)) ≤ βTηT

4b2 Var
(
∇w ℓ̂(WT−1, Zn)

)
. (A.37)

To summarize, (A.34) and (A.37) can be rewritten as

I(WT ; Zn |W(T−1), Z(n−1))

≤


βTηT
4b2 Var

(
∇w ℓ̂(WT−1, Zn)

)
if Zn is used at the T-th iteration,

0 otherwise.

(A.38)

Assume that the data point Zn belongs to the j-th mini-batch Sj. Now substituting (A.38) into (A.33)

and doing this procedure recursively lead to

I(W(T), Z(n−1); Zn) ≤ ∑
t∈Tj

βtηt

4b2 Var
(
∇w ℓ̂(Wt−1, Zn)

)
,

where the set Tj contains the indices of iterations in which the mini-batch Sj is used. Hence, this

upper bound along with (A.32) naturally gives

I(W; Zn) ≤ ∑
t∈Tj

βtηt

4b2 Var
(
∇w ℓ̂(Wt−1, Zn)

)
. (A.39)
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By symmetry, for any data point in Sj besides Zn, the mutual information between W and this data

point can be upper bound by the right-hand side of (A.39) as well. Finally, recall that Lemma 5

provides an upper bound for the expected generalization gap:
√

2σ

n

n

∑
i=1

√
I(WT ; Zi) =

√
2σ

n

m

∑
j=1

∑
Z∈Sj

√
I(WT ; Z). (A.40)

By substituting (A.39) into the above expression, we know the expected generalization gap can be

further upper bounded by
√

2σ

2n

m

∑
j=1

√
∑

t∈Tj

βtηt · Var
(
∇w ℓ̂(Wt−1, Z̄j)

)
,

where Z̄j is any data point in the mini-batch Sj.

Finally, we are in a position to prove Proposition 4.

Proof. Consider a new loss function and the gradient of a new surrogate loss:

ℓ(w, Sj) ≜
1
b ∑

Z∈Sj

ℓ(w, Z), ∇w ℓ̂(w, Sj) ≜
1
b ∑

Z∈Sj

∇w ℓ̂(w, Z).

Then ℓ(w, Sj) is σ/
√

b-sub-Gaussian under Sj ∼ µ⊗b for all w ∈ W . We view each mini-batch Sj as

a data point and view ℓ(w, Sj) as a new loss function. By using Lemma 25, we obtain:

∣∣E [Lµ(W)− LS(W)
]∣∣ ≤ √

2σ

2m
√

b

m

∑
j=1

√
∑

t∈Tj

βtηt · Var
(
∇w ℓ̂(Wt−1, Sj)

)
. (A.41)

Since the dataset contains n data points and is divided into m disjoint mini-batches with size b, we

have n = mb. Substituting this into (A.41) leads to the desired conclusion.

A.3.4 Proof of Corollary 1

Proof. The Minkowski inequality implies that for any non-negative xi, the inequality
√

∑i xi ≤ ∑i
√

xi

holds. Therefore, we can further upper bound the generalization bound in Lemma 25 by
√

2σ

2n

m

∑
j=1

∑
t∈Tj

√
βtηt · Var

(
∇w ℓ̂(Wt−1, Z̄j)

)
=

√
2σ

2n

T

∑
t=1

√
βtηt · Var

(
∇w ℓ̂(Wt−1, Z†

t )
)

.
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Alternatively, by Jensen’s inequality and n = mb, we can further upper bound the generalization

bound in Lemma 25 by

√
2σ

2

√√√√ 1
bn

T

∑
t=1

βtηt · Var
(
∇w ℓ̂(Wt−1, Z†

t )
)

.
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Appendix B

Appendix to Chapter 4

B.1 Examples of f -divergence

We recall some examples of f -divergence [70] here.

• KL-divergence [165]: f (x) = x log(x),

DKL(P∥Q) =
∫

log
(

dP
dQ

)
dP. (B.1)

• Total variation distance: f (x) = |x− 1|/2,

DTV(P∥Q) =
1
2

∫ ∣∣∣ dP
dQ − 1

∣∣∣dQ. (B.2)

• Chi-square divergence [213]: f (x) = (x− 1)2 or f (x) = x2 − 1,

Dχ2(P∥Q) =
∫ (

dP
dQ − 1

)2
dQ =

∫ (
dP
dQ

)2
dQ− 1. (B.3)

• Jensen-Shannon divergence [182]: f (x) = x log(x)/2− (1 + x) log((1 + x)/2)/2,

JS(P∥Q) =
1
2

DKL

(
P∥ P+Q

2

)
+

1
2

DKL

(
Q∥ P+Q

2

)
. (B.4)

Note that the Jensen-Shannon divergence is defined in a general form in [182] for ω ∈ [0, 1]

JSω(P∥Q) = ωDKL (P∥ωP + (1−ω)Q) + (1−ω)DKL (Q∥ωP + (1−ω)Q) . (B.5)

• Eγ-divergence (also called hockey-stick divergence) [184, 218, 242, 248]: f (x) = (x− γ)+ for
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γ ≥ 1 where (a)+ ≜ max{a, 0},

Eγ(P∥Q) =
∫ (

dP
dQ − γ

)
+

dQ. (B.6)

• DeGroot statistical information [73] of order p: f (x) = min{p, 1− p} −min{p, 1− px} for

p ∈ (0, 1),

Ip(P∥Q) = min{p, 1− p} −
∫

min
{

p, 1− p dP
dQ

}
dQ. (B.7)

• Marton’s divergence [192]: f (x) = (x− 1)2I[x<1],

d2(P∥Q)2 = inf E
[
Pr(X ̸= Y | Y)2

]
=
∫ (

dP
dQ − 1

)2
I
[ dP
dQ<1]

dQ, (B.8)

where the infimum is taken over all couplings, i.e., joint distributions PX,Y which have marginals

PX = P and PY = Q, respectively.

We refer the readers to [223, 242] for more examples of f -divergence and their properties.

B.2 Proofs for Section 4.5

B.2.1 Proof of Lemma 10

The proof of Lemma 10 relies on Ky Fan’s min-max theorem [94]. As a reminder, a function

f : X × Y → R is said to be concave-like on X if, for any two elements x1, x2 ∈ X and λ ∈ [0, 1],

there exists an element x0 ∈ X such that for all y ∈ Y

f (x0, y) ≥ λ f (x1, y) + (1− λ) f (x2, y).

Similarly, f is said to be convex-like on Y , if for any two elements y1, y2 ∈ Y and λ ∈ [0, 1], there

exists an element y0 ∈ Y such that for all x ∈ X

f (x, y0) ≤ λ f (x, y1) + (1− λ) f (x, y2).

A function g : X → R is called upper semicontinuous on a metric space X if for every point x0 ∈ X ,

lim supx→x0
g(x) ≤ g(x0). Next, we recall1 Ky Fan’s min-max theorem [94].

1We apply Ky Fan’s min-max theorem to the function − f instead of f .
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Lemma 26 ([94, Theorem 2]). Let X be a compact Hausdorff space and Y an arbitrary set (not topologized).

Let f be a real-valued function on X ×Y such that, for every y ∈ Y , f (·, y) is upper semicontinuous on X .

If f is concave-like on X and convex-like on Y , then

inf
y∈Y

max
x∈X

f (x, y) = max
x∈X

inf
y∈Y

f (x, y). (B.9)

Now we are in a position to prove Lemma 10.

Proof. We first introduce a (measurable) loss function ℓ : [0, 1]× [0, 1]→ R+ ∪ {∞} and assume that

this loss function satisfies: (i) ℓ(a, a) = 0 for any a ∈ [0, 1] and (ii) for any a ∈ [0, 1], ℓ(a, ·) is convex

and continuous. The benefit-of-splitting in Definition 6 can be written as

inf
h:X→[0,1]

max
s∈{0,1}

E [ℓ(ys(X), h(X)) | S = s]− max
s∈{0,1}

inf
h:X→[0,1]

E [ℓ(ys(X), h(X)) | S = s] . (B.10)

By taking the ℓ1 loss ℓ(a, b) = |a− b|, ℓ2 loss ℓ(a, b) = (a− b)2, and KL loss ℓ(a, b) = DKL(a∥b) ≜
a log(a/b) + (1− a) log((1− a)/(1− b)), respectively, the above quantity becomes ϵsplit,1, ϵsplit,2,

and ϵsplit,KL. These loss functions all satisfy our above two assumptions. In particular, by our first

assumption, one can choose h(x) = ys(x) which leads to

max
s∈{0,1}

inf
h:X→[0,1]

E [ℓ(ys(X), h(X)) | S = s] = 0. (B.11)

Hence, the problem remains providing equivalent expression for the inf-max term

inf
h:X→[0,1]

max
s∈{0,1}

E [ℓ(ys(X), h(X)) | S = s]

= inf
h:X→[0,1]

sup
ω∈[0,1]

ω ·E [ℓ(y0(X), h(X)) | S = 0] + (1−ω) ·E [ℓ(y1(X), h(X)) | S = 1] . (B.12)

Next, we use Ky Fan’s min-max theorem [94] (see Lemma 26) to swap the positions of infimum and

supremum in (B.12). We start with verifying the assumptions in Ky Fan’s min-max theorem. We

denote the set of all measurable functions from X to [0, 1] by L(X → [0, 1]) and introduce a function

F : [0, 1]×L(X → [0, 1])→ R

F(ω, h) ≜ ω ·E [ℓ(y0(X), h(X)) | S = 0] + (1−ω) ·E [ℓ(y1(X), h(X)) | S = 1] .

For every fixed h ∈ L(X → [0, 1]), F(·, h) is a linear function. Consequently, F(·, h) is upper

semicontinuous and F is concave-like on [0, 1]. Furthermore, for any h1, h1 ∈ L(X → [0, 1]),
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λ ∈ [0, 1], and ω ∈ [0, 1], we have λh1 + (1− λ)h2 ∈ L(X → [0, 1]) and

F(ω, λh1 + (1− λ)h2) ≤ λF(ω, h1) + (1− λ)F(ω, h2)

by the convexity of ℓ(a, ·) for any a ∈ [0, 1]. Hence, F is convex-like on L(X → [0, 1]). Therefore, by

Ky Fan’s min-max theorem, (B.12) is equal to

sup
ω∈[0,1]

inf
h:X→[0,1]

ω ·E [ℓ(y0(X), h(X)) | S = 0] + (1−ω) ·E [ℓ(y1(X), h(X)) | S = 1] . (B.13)

Now we take any probability distribution P over X such that P0 and P1 are absolutely continuous

with respect to P. For example, one can simply choose dP = (dP0 + dP1)/2. Then (B.13) can be

written as

sup
ω∈[0,1]

inf
h:X→[0,1]

∫ (
ω · ℓ(y0(x), h(x))dP0(x)

dP(x) + (1−ω) · ℓ(y1(x), h(x))dP1(x)
dP(x)

)
dP(x). (B.14)

Next, we prove that the infimum and the integer in (B.14) can be interchanged. For a fixed ω ∈ [0, 1],

we introduce a function f : X × [0, 1]→ R

f (x, h̄) ≜ ω · ℓ(y0(x), h̄)dP0(x)
dP(x) + (1−ω) · ℓ(y1(x), h̄)dP1(x)

dP(x)

and aim at proving

inf
h:X→[0,1]

∫
f (x, h(x))dP(x) =

∫
inf

h̄∈[0,1]
f (x, h̄)dP(x). (B.15)

Since f (·, h̄) is measurable and f (x, ·) is continuous, f is a Carathéodory function [see Section 4.10

in 6]. Hence, by the measurable maximum theorem [see Theorem 18.19 in 6], the mapping

x → inf
h̄∈[0,1]

f (x, h̄)

is measurable and the argmin correspondence (i.e., set-valued function)

H∗(x) ≜

{
h̄∗ ∈ [0, 1] | f (x, h̄∗) = inf

h̄∈[0,1]
f (x, h̄)

}

is also measurable and admits a measurable selector. We denote this selector by h∗ : X → [0, 1]

and, by definition, it satisfies h∗(x) ∈ H∗(x) for all x ∈ X . Now we are ready to prove (B.15). One

direction LHS ≥ RHS can be obtained directly since for any h : X → [0, 1]

∫
f (x, h(x))dP(x) ≥

∫
inf

h̄∈[0,1]
f (x, h̄)dP(x).
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By the definition of h∗(x),

RHS =
∫

f (x, h∗(x))dP(x) ≥ inf
h:X→[0,1]

∫
f (x, h(x))dP(x) = LHS.

Therefore, the equality in (B.15) holds and (B.14) becomes

sup
ω∈[0,1]

∫ (
ω · ℓ(y0(x), h∗(x))dP0(x)

dP(x) + (1−ω) · ℓ(y1(x), h∗(x))dP1(x)
dP(x)

)
dP(x). (B.16)

Hence, our last step is to compute the function h∗ for the loss functions of interest. If the loss function

is ℓ1, then

argmin
h̄∈[0,1]

f (x, h̄) = argmin
h̄∈[0,1]

{
ω

dP0(x)
dP(x)

· |h̄− y0(x)|+ (1−ω)
dP1(x)
dP(x)

· |h̄− y1(x)|
}

.

For a fixed ω ∈ [0, 1], the optimal classifier is

h∗(x) =


y0(x) if dP0(x)

dP1(x) ≥ 1−ω
ω

y1(x) otherwise.

By substituting the optimal classifier and ℓ1 loss into (B.16), we get the desired equivalent expression

of ϵsplit,1:

sup
ω∈[0,1]

(1−ω)
∫
Aω

|y1(x)− y0(x)|dP1(x) + ω
∫
Ac

ω

|y1(x)− y0(x)|dP0(x),

where Aω ≜
{

x | dP0(x)
dP1(x) ≥ 1−ω

ω

}
. Similarly, when ℓ2 loss is used, the optimal classifier becomes

h∗(x) =
ωy0(x)dP0(x) + (1−ω)y1(x)dP1(x)

ωdP0(x) + (1−ω)dP1(x)
, (B.17)

which leads to the equivalent expression of ϵsplit,2:

sup
ω∈[0,1]

ω(1−ω)
∫

(y1(x)− y0(x))2dP0(x)dP1(x)
ωdP0(x) + (1−ω)dP1(x)

.

When the KL-loss is used, the optimal classifier h∗ has expression in (B.17) as well. Consequently,

we have the equivalent expression of ϵsplit,KL:

sup
ω∈[0,1]

ωE [DKL(y0(X)∥h∗(X)) | S = 0] + (1−ω)E [DKL(y1(X)∥h∗(X)) | S = 1] . (B.18)
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This expression can be further simplified by using the chain rule of KL-divergence:

DKL(QX,Y∥RX,Y) = DKL(QY|X∥RY|X | QX) + DKL(QX∥RX).

By taking dQX = dPs, dRX = wdP0 + (1− w)dP1, QY|X(1|x) = ys(x), and RY|X(1|x) = h∗(x), we

obtain

E [DKL(ys(X)∥h∗(X)) | S = s]

= DKL

(
PX,Y|S=s∥ωPX,Y|S=0 + (1−ω)PX,Y|S=1

)
−DKL (Ps∥ωP0 + (1−ω)P1) .

Substituting this into (B.18) gives

ϵsplit,KL = sup
ω∈[0,1]

JSω(PX,Y|S=0∥PX,Y|S=1)− JSω(P0∥P1),

where JSω(·∥·) is the Jensen-Shannon divergence.

B.2.2 Proof of Theorem 3

We divide the proof of Theorem 3 into three independent steps. First, we prove the upper bounds for

ϵsplit,1, ϵsplit,2, and ϵsplit,KL in a unified way. Then we prove the lower bounds for ϵsplit,1 and ϵsplit,KL

using Lemma 10. Finally, we prove the lower bound for ϵsplit,2 by leveraging the proof techniques of

Brown-Low’s two-points lower bound [45].

Proof. Note that (B.11) implies in the information-theoretic regime, optimal split classifiers can

always achieve perfect performance. Specifically, one can select labeling functions y0 and y1 as split

classifiers which have zero loss on each group. Hence, the problem remains upper bounding the

performance of the optimal group-blind classifier. To achieve this goal, we consider two special

group-blind classifiers:

h∗(x) =
dP0(x)
2dP(x)

y0(x) +
dP1(x)
2dP(x)

y1(x), (B.19)

h∗∗(x) =
1
2
(y0(x) + y1(x)), (B.20)

where dP = (dP0 + dP1)/2. In what follows, we upper bound the performance of the group-blind

classifiers in (B.19) and (B.20) and these bounds will be naturally translated into the upper bounds

of ϵsplit,1, ϵsplit,2, and ϵsplit,KL, respectively.
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We upper bound ϵsplit,1 by using the group-blind classifier h∗ in (B.19).

ϵsplit,1 = inf
h:X→[0,1]

max
s∈{0,1}

E [|h(X)− ys(X)| | S = s] ≤ max
s∈{0,1}

E [|h∗(X)− ys(X)| | S = s]

=
∫
|y1(x)− y0(x)| dP1(x)

2dP(x)dP0(x). (B.21)

By the Cauchy-Schwarz inequality, we can further upper bound (B.21) by√
E [(y1(X)− y0(X))2 | S = 0] ·

∫ (
dP1(x)
2dP(x)

)2
dP0(x). (B.22)

Furthermore, we have

∫ (
dP1(x)
2dP(x)

)2
dP0(x) =

1
4

∫ (
dP1(x)
dP(x)

)2 dP0(x)
dP(x) dP(x) =

1
4

∫ (
dP1(x)
dP(x)

)2 (
2− dP1(x)

dP(x)

)
dP(x). (B.23)

Since 1
4 x2(2− x) ≤ 1− |x− 1| holds for any x ≥ 0, the RHS of (B.23) can be upper bounded by

1−
∫ ∣∣∣dP1(x)

dP(x) − 1
∣∣∣dP(x) = 1− 1

2

∫
|dP1(x)− dP0(x)| = 1−DTV(P0∥P1). (B.24)

Combining (B.21–B.24) gives

ϵsplit,1 ≤
√

E [(y1(X)− y0(X))2 | S = 0] ·
√

1−DTV(P0∥P1).

By symmetry, we can further tighten the upper bound

ϵsplit,1 ≤ min
s∈{0,1}

√
E [(y1(X)− y0(X))2 | S = s] ·

√
1−DTV(P0∥P1).

On the other hand, using the classifier h∗∗ in (B.20) leads to an alternative upper bound

ϵsplit,1 ≤
1
2

max
s∈{0,1}

E [|y1(X)− y0(X)| | S = s] .

Similarly, we can upper bound ϵsplit,2 by using the classifier h∗ in (B.19)

ϵsplit,2 ≤ max
s∈{0,1}

E
[
(h∗(X)− ys(X))2 | S = s

]
≤
∫
(y1(x)− y0(x))2

(
dP1(x)
2dP(x)

)2
dP0(x) +

∫
(y1(x)− y0(x))2

(
dP0(x)
2dP(x)

)2
dP1(x)

=
∫
(y1(x)− y0(x))2 dP1(x)

2dP(x)dP0(x), (B.25)

where the second inequality uses the fact that max{a, b} ≤ a + b. By the Cauchy-Schwarz inequality
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and (B.23), (B.24), we can further upper bound (B.25) by√
E [(y1(X)− y0(X))4 | S = 0] ·

√
1−DTV(P0∥P1).

By symmetry, we can further tighten this upper bound by replacing it with

min
s∈{0,1}

√
E [(y1(X)− y0(X))4 | S = s] ·

√
1−DTV(P0∥P1).

On the other hand, using the classifier h∗∗ in (B.20) leads to an alternative upper bound for ϵsplit,2.

We repeat the same strategy and upper bound ϵsplit,KL by using the classifier h∗ in (B.19)

ϵsplit,KL ≤ max
s∈{0,1}

E [DKL(ys(X)∥h∗(X)) | S = s]

≤ E [DKL(y0(X)∥h∗(X)) | S = 0] + E [DKL(y1(X)∥h∗(X)) | S = 1] .

Recall the chain rule of KL-divergence

DKL(QX,Y∥RX,Y) = DKL(QY|X∥RY|X | QX) + DKL(QX∥RX).

By taking dQX = dPs, dRX = dP, QY|X(1|x) = ys(x), and RY|X(1|x) = h∗(x) and noticing the

definition of h∗ in (B.19), we obtain

E [DKL(ys(X)∥h∗(X)) | S = s] = DKL

(
PX,Y|S=s∥

PX,Y|S=0+PX,Y|S=1
2

)
−DKL

(
Ps∥ P0+P1

2

)
. (B.26)

Hence,

ϵsplit,KL ≤ 2JS(PX,Y|S=0∥PX,Y|S=1)− 2JS(P0∥P1),

where JS(·∥·) is the Jensen-Shannon divergence. On the other hand, taking the classifier h∗∗ in (B.20)

gives an alternative upper bound for ϵsplit,KL.

We proceed to prove the lower bounds of ϵsplit,1 and ϵsplit,KL.
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Proof. Recall that A0.5 ≜
{

x ∈ X | dP0(x)
dP1(x) ≥ 1

}
. By Lemma 10, we have

ϵsplit,1 ≥
1
2

(∫
A0.5

|y1(x)− y0(x)|dP1(x) +
∫
Ac

0.5

|y1(x)− y0(x)|dP0(x)
)

=
1
2

(
E [|y1(X)− y0(X)| | S = 1]−

∫
Ac

0.5

|y1(x)− y0(x)|(dP1(x)− dP0(x))
)

=
1
2

(
E [|y1(X)− y0(X)| | S = 1]−

∫
|y1(x)− y0(x)|

(
1− dP0(x)

dP1(x)

)
+

dP1(x)
)

≥ 1
2

(
E [|y1(X)− y0(X)| | S = 1]−

√∫
(y1(x)− y0(x))2dP1(x)

∫ (
1− dP0(x)

dP1(x)

)2
I
[

dP0(x)
dP1(x) ≤ 1

]
dP1(x)

)

=
1
2

(
E [|y1(X)− y0(X)| | S = 1]−

√
E [(y1(X)− y0(X))2 | S = 1] · d2(P0∥P1)

)
,

where d2(P0∥P1) is Marton’s divergence. By symmetry, one can obtain

ϵsplit,1 ≥
1
2

max
s∈{0,1}

(
E [|y1(X)− y0(X)| | S = s]−

√
E [(y1(X)− y0(X))2 | S = s] · d2(P1−s∥Ps)

)
.

(B.27)

Finally, the lower bound of ϵsplit,KL follows directly from Lemma 10.

Before getting to the lower bound of ϵsplit,2, we prove a useful lemma. Here we denote

As ≜ E [|y1(X)− y0(X)| | S = s] for s ∈ {0, 1}, (B.28a)

B ≜
√

Dχ2(P1∥P0) + 1. (B.28b)

Lemma 27. Assume that A0 ≤ A1. For any measurable classifier h : X → [0, 1] and constant 0 ≤ ϵ <

A2
0/B2, if E

[
(h(X)− y0(X))2 | S = 0

]
≤ ϵ, then E

[
(h(X)− y1(X))2 | S = 1

]
≥ (A1 − B

√
ϵ)2.

Proof. Consider a convex optimization problem

min
h:X→[0,1]

∫
(h(x)− y1(x))2dP1(x),

s.t.
∫
(h(x)− y0(x))2dP0(x) ≤ ϵ.

Computing the Gateaux derivative of the Lagrange multiplier gives the following optimal conditions

[166, Theorem 6.6.1],

(h(x)− y1(x))dP1(x) + λ(h(x)− y0(x))dP0(x) = 0, (B.29)

λ

(∫
(h(x)− y0(x))2dP0(x)− ϵ

)
= 0, (B.30)

λ ≥ 0, (B.31)
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which provides the optimal classifier

h∗(x) =
y1(x)dP1(x) + λy0(x)dP0(x)

dP1(x) + λdP0(x)
.

We denote r(x) ≜ dP1(x)
dP0(x) and simplify the expression of the optimal classifier

h∗(x) =
y1(x)r(x) + λy0(x)

r(x) + λ
. (B.32)

If λ = 0, then h∗(x) = y1(x) and, consequently,

E
[
(h∗(X)− y0(X))2 | S = 0

]
= E

[
(y1(X)− y0(X))2 | S = 0

]
.

However, this contradicts our assumptions E
[
(h∗(X)− y0(X))2 | S = 0

]
≤ ϵ and

ϵ <
E [|y1(X)− y0(X)| | S = 0]2

Dχ2(P1∥P0) + 1
≤ E

[
(y1(X)− y0(X))2 | S = 0

]
.

Hence, we have λ > 0. In this case, (B.30) and (B.32) imply

∫ (y1(x)r(x) + λy0(x)
r(x) + λ

− y0(x)
)2

dP0(x) = ϵ.

We simplify the expression and obtain

∫
r(x)2

(
y1(x)− y0(x)

r(x) + λ

)2

dP0(x) = ϵ. (B.33)

Now we consider lower bounding E
[
(h∗(X)− y1(X))2 | S = 1

]
. By its definition and the expression

of the optimal classifier (B.32), we have

E
[
(h∗(X)− y1(X))2 | S = 1

]
=
∫ (y1(x)r(x) + λy0(x)

r(x) + λ
− y1(x)

)2

dP1(x)

=
∫ (

λ(y1(x)− y0(x))
r(x) + λ

)2

dP1(x)

≥
(∫

λ|y1(x)− y0(x)|
r(x) + λ

dP1(x)
)2

=

(∫
|y1(x)− y0(x)|dP1(x)−

∫ r(x)|y1(x)− y0(x)|
r(x) + λ

dP1(x)
)2

=

(
E [|y1(X)− y0(X)| | S = 1]−

∫ r(x)|y1(x)− y0(x)|
r(x) + λ

dP1(x)
)2

,

(B.34)

where the only inequality is due to the Cauchy-Schwarz inequality. Furthermore, by the Cauchy-
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Schwarz inequality again and (B.33), we have

∫ r(x)|y1(x)− y0(x)|
r(x) + λ

dP1(x) ≤
√∫

r(x)2
(

y1(x)− y0(x)
r(x) + λ

)2

dP0(x)
∫

r(x)dP1(x)

=
√

ϵE [r(X) | S = 1]. (B.35)

Recall that r(x) = dP1(x)
dP0(x) . Hence,

E [r(X) | S = 1] =
∫ dP1(x)

dP0(x)
dP1(x) =

∫ [(dP1(x)
dP0(x)

)2

− 1

]
dP0(x) + 1 = Dχ2(P1∥P0) + 1. (B.36)

By our assumptions,

E [|y1(X)− y0(X)| | S = 1]−
√

ϵ(Dχ2(P1∥P0) + 1)

≥ E [|y1(X)− y0(X)| | S = 1]−E [|y1(X)− y0(X)| | S = 0] ≥ 0.

Combining (B.34), (B.35), and (B.36) together, we conclude that

E
[
(h∗(X)− y1(X))2 | S = 1

]
≥ (E [|y1(X)− y0(X)| | S = 1]−

√
ϵE [r(X) | S = 1])2

=

(
E [|y1(X)− y0(X)| | S = 1]−

√
ϵ
(

Dχ2(P1∥P0

)
+ 1)

)2

.

Now we are in a position to prove the lower bound for ϵsplit,2.

Proof. By Lemma 27, for any classifier h : X → [0, 1] and

0 ≤ ϵ <
A2

0
B2 ,

if E
[
(h(X)− y0(X))2 | S = 0

]
≤ ϵ, then E

[
(h(X)− y1(X))2 | S = 1

]
≥ (A1 − B

√
ϵ)2, where A0,

A1, and B are defined in (B.28). Now we take ϵ = (A0/(B + 1))2, which naturally satisfies the

assumptions in Lemma 27. As a result, if

E
[
(h(X)− y0(X))2 | S = 0

]
≤
(

A0

B + 1

)2
,

then

E
[
(h(X)− y1(X))2 | S = 1

]
≥
(

A1 − B
A0

B + 1

)2
≥
(

A0

B + 1

)2

where the second inequality is because of the assumption A1 ≥ A0. Consequently, for any h : X →
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[0, 1],

max
s∈{0,1}

E
[
(h(X)− ys(X))2 | S = s

]
≥
(

A0

B + 1

)2
=

E [|y1(X)− y0(X)| | S = 0]√
Dχ2(P1∥P0) + 1 + 1

2

.

B.2.3 Proof of Proposition 5

Proof. First, note that infhs :X→[0,1]
for s∈{0,1}

E [|hS(X)− yS(X)|] = 0 as one can choose hs(x) = ys(x). Hence,

our focus is on upper and lower bounding

ϵsplit,pop = inf
h:X→[0,1]

E [|h(X)− yS(X)|]

= inf
h:X→[0,1]

Pr(S = 0)
∫
|h(x)− y0(x)|dP0(x) + Pr(S = 1)

∫
|h(x)− y1(x)|dP1(x). (B.37)

By the proof of Lemma 10, the optimal classifier of (B.37) is

h∗(x) =


y0(x) if Pr(S=0)·dP0(x)

Pr(S=1)·dP1(x) ≥ 1

y1(x) otherwise.

By plugging the optimal classifier into (B.37), we can write ϵsplit,pop equivalently as

Pr(S = 0) ·E [|y1(X)− y0(X)| | S = 0]−
∫
|y1(x)− y0(x)| (Pr(S = 0) · dP0(x)− Pr(S = 1) · dP1(x))+ .

The desired upper bound can be obtained by dropping the negative term. Now we proceed to prove

the lower bound. Since

∫
|y1(x)− y0(x)| (Pr(S = 0) · dP0(x)− Pr(S = 1) · dP1(x))+

≤ Pr(S = 0)
∫ (

dP0(x)
dP1(x) −

Pr(S=1)
Pr(S=0)

)
+

dP1(x)

= Pr(S = 0) · E Pr(S=1)
Pr(S=0)

(P0∥P1),

where E Pr(S=1)
Pr(S=0)

(P0∥P1) is the Eγ-divergence with γ = Pr(S = 1)/ Pr(S = 0), we have

ϵsplit,pop ≥ Pr(S = 0)
(

E [|y1(X)− y0(X)| | S = 0]− E Pr(S=1)
Pr(S=0)

(P0∥P1)

)
.
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B.3 Proofs for Section 4.6

B.3.1 Proof of Theorem 4

Recall that the false error rate is the maximum between false positive rate and false negative rate

FERs(h) ≜ max {E [h(X) | Y = 0, S = s] , E [1− h(X) | Y = 1, S = s]} . (B.38)

We prove the following lemma which will be used in the proof of Theorem 4.

Lemma 28. The false error rate has the following equivalent expressions

FERs(h) = max
{

E [h(X)(1− ys(X)) | S = s]
Pr(Y = 0 | S = s)

, 1− E [h(X)ys(X) | S = s]
Pr(Y = 1 | S = s)

}
= max

{
E [h(X)(1− ys(X)) fs(X)]

Pr(Y = 0 | S = s)
, 1− E [h(X)ys(X) fs(X)]

Pr(Y = 1 | S = s)

}
.

where fs(x) ≜ Pr(S=s|X=x)
Pr(S=s) .

Proof. The proof follows directly from Bayes’s rule,

dPX|Y=0,S=s =
1− ys(x)

Pr(Y = 0 | S = s)
dPX|S=s =

1− ys(x)
Pr(Y = 0 | S = s)

· fs(x)dPX .

Now we are in a position to prove Theorem 4.

Proof. By Lemma 28, the quantity infh:X→[0,1] maxs∈{0,1} FERs(h) can be equivalently written as

inf
h:X→[0,1]

max
s∈{0,1}

{
E [h(X)(1− ys(X)) fs(X)]

Pr(Y = 0 | S = s)
, 1− E [h(X)ys(X) fs(X)]

Pr(Y = 1 | S = s)

}
= inf

h:X→[0,1]
max
µµµ∈∆4

G(µµµ, h),

(B.39)

where µµµ ≜ (µ0,0, µ0,1, µ1,0, µ1,1) and

G(µµµ, h) ≜ ∑
s∈{0,1}

(
µs,0

E [h(X)(1− ys(X)) fs(X)]

Pr(Y = 0 | S = s)
+ µs,1

(
1− E [h(X)ys(X) fs(X)]

Pr(Y = 1 | S = s)

))

= ∑
s∈{0,1}

µs,1 + E

 ∑
s∈{0,1}

(
µs,0(1− ys(X)) fs(X)

Pr(Y = 0 | S = s)
− µs,1ys(X) fs(X)

Pr(Y = 1 | S = s)

)
h(X)

 .

By denoting

ϕs,0(x) ≜
(1− ys(x)) fs(x)

Pr(Y = 0 | S = s)
ϕs,1(x) ≜

−ys(x) fs(x)
Pr(Y = 1 | S = s)

,
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we can write

G(µµµ, h) = ∑
s∈{0,1}

µs,1 + E

 ∑
s,i∈{0,1}

µs,iϕs,i(X)h(X)

 .

We next use Ky Fan’s min-max theorem [94] (see Lemma 26) to swap the positions of infimum

and maximum. First, ∆4 is a compact set and for any h : X → [0, 1], G(·, h) is continuous on ∆4.

Furthermore, for any h : X → [0, 1], G(·, h) is linear over ∆4; for any µµµ ∈ ∆4, G(µµµ, ·) is convex-like

over all (measurable) classifiers from X to [0, 1]. Hence, we have

inf
h:X→[0,1]

max
µµµ∈∆4

G(µµµ, h) = max
µµµ∈∆4

inf
h:X→[0,1]

G(µµµ, h). (B.40)

Next, we prove that, for any fixed µµµ ∈ ∆4,

inf
h:X→[0,1]

E

 ∑
s,i∈{0,1}

µs,iϕs,i(X)h(X)

 = E

 inf
h:X→[0,1]

∑
s,i∈{0,1}

µs,iϕs,i(X)h(X)

 . (B.41)

One direction LHS ≥ RHS can be obtained directly since for any h : X → [0, 1]

E

 ∑
s,i∈{0,1}

µs,iϕs,i(X)h(X)

 ≥ E

 inf
h:X→[0,1]

∑
s,i∈{0,1}

µs,iϕs,i(X)h(X)

 .

Note that the infimum in the RHS of (B.41) is point-wise. For any fixed x ∈ X , the following

optimization problem

inf
h̄∈[0,1]

∑
s,i∈{0,1}

µs,iϕs,i(x)h̄

has an optimal solution h̄∗ = I[∑s,i∈{0,1} µs,iϕs,i(x) ≤ 0]. Hence, there is a measurable classifier

which can achieve the point-wise infimum inside the expectation of the RHS in (B.41): h∗(x) =

I[∑s,i∈{0,1} µs,iϕs,i(x) ≤ 0]. Consequently, the RHS of (B.41) can be simplified as

RHS = E

 ∑
s,i∈{0,1}

µs,iϕs,i(X)


−

 , (B.42)

where for a ∈ R, (a)− ≜ min{a, 0}. Since the LHS of (B.41) is an infimum over all measurable

classifiers, using the classifier h∗ leads to

LHS ≤ E

 ∑
s,i∈{0,1}

µs,iϕs,i(X)h∗(X)

 = E

 ∑
s,i∈{0,1}

µs,iϕs,i(X)


−

 = RHS.
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Combining (B.39–B.42) together implies

inf
h:X→[0,1]

max
s∈{0,1}

FERs(h) = max
µµµ∈∆4

 ∑
s∈{0,1}

µs,1 + E

 ∑
s,i∈{0,1}

µs,iϕs,i(X)


−

 .

Similarly, one can prove that

max
s∈{0,1}

inf
h:X→[0,1]

FERs(h) = max
s∈{0,1}

max
ννν(s)∈∆2

ν
(s)
1 + E

 ∑
i∈{0,1}

ν
(s)
i ϕs,i(X)


−

 .

B.3.2 Proof of Proposition 6

We start with a useful lemma which will be used in the proof of Proposition 6.

Lemma 29. Let f : X ×Rk → R be a bounded measurable function. For a fixed x ∈ X , if v(x, w0) ∈ Rk is

a supergradient of f (x, ·) at w0:

f (x, w)− f (x, w0) ≤ v(x, w0)
T(w− w0), (B.43)

then E [v(X, w0)] is a supergradient of E [ f (X, ·)] at w0:

E [ f (X, w)]−E [ f (X, w0)] ≤ E [v(X, w0)]
T (w− w0). (B.44)

The proof of Lemma 29 follows directly by taking expectation on both sides of (B.43). We refer

the readers to [232] for a more general result on the interchangeability of subdifferentiation and

(conditional) expectation. Now we are in a position to prove Proposition 6.

Proof. Consider a function g(x, µµµ) ≜ ∑s∈{0,1} µs,1 +
(

∑s,i∈{0,1} µs,iϕs,i(x)
)
−

. For a fixed x, g(x, ·) has

a supergradient at µµµ ≜ (µ0,0, µ0,1, µ1,0, µ1,1):i + ϕs,i(x)I
[

∑
s′ ,i′∈{0,1}

µs′ ,i′ϕs′ ,i′(x) < 0
]

s,i∈{0,1}

.

Therefore, by Lemma 29, g has a supergradient at µµµ:

∂g(µµµ) ∋
i + E

ϕs,i(X) · I
[

∑
s′ ,i′∈{0,1}

µs′ ,i′ϕs′ ,i′(X) < 0
]

s,i∈{0,1}

.
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Now we introduce auxiliary functions

ψs,i(x) ≜
1− i− ys(x)

Pr(Y = i | S = s)
, s, i ∈ {0, 1}.

By Bayes’s rule and the definition of ϕs,i (see (4.5)), we have

ψs,i(x) · dPX|S=s(x) = ϕs,i(x) · dPX(x).

Hence,

∂g(µµµ) ∋
i + E

ψs,i(X) · I
[

∑
s′ ,i′∈{0,1}

µs′ ,i′ϕs′ ,i′(X) < 0
] ∣∣∣∣∣ S = s


s,i∈{0,1}

.

Similarly, one can obtain a closed-form supergradient of gs(ννν).

B.4 Proofs for Section 4.7

B.4.1 Proof of Theorem 5

We first recall a useful lemma which can be proved by the variational representation [207] of total

variation distance.

Lemma 30. For any measurable and non-negative function f : X → R+,

|E [ f (X0)]−E [ f (X1)] | ≤ ∥ f ∥∞DTV(P0∥P1),

where X0 ∼ P0 and X1 ∼ P1.

Now we are in a position to prove Theorem 5.

Proof. We prove the upper bound first. Let h∗s be an optimal classifier for the group s ∈ {0, 1}, i.e.,

h∗s ∈ argminh∈H E [|h(X)− ys(X)| | S = s]. Then

inf
h∈H

max
s∈{0,1}

E [|h(X)− ys(X)| | S = s] ≤ max{E [|h∗0(X)− y1(X)| | S = 1] , E [|h∗0(X)− y0(X)| | S = 0]}.

By the triangle inequality,

E [|h∗0(X)− y1(X)| | S = 1] ≤ E [|h∗1(X)− h∗0(X)| | S = 1] + E [|h∗1(X)− y1(X)| | S = 1] .
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Therefore,

inf
h∈H

max
s∈{0,1}

E [|h(X)− ys(X)| | S = s] ≤ E [|h∗1(X)− h∗0(X)| | S = 1] + max
s∈{0,1}

E [|h∗s (X)− ys(X)| | S = s] ,

which implies that

ϵHsplit = inf
h∈H

max
s∈{0,1}

E [|h(X)− ys(X)| | S = s]− max
s∈{0,1}

inf
h∈H

E [|h(X)− ys(X)| | S = s]

≤ E [|h∗1(X)− h∗0(X)| | S = 1] .

By symmetry, we obtain the desired upper bound for ϵHsplit. Now we proceed to prove the lower

bound for ϵHsplit. By the triangle inequality, we have

E [|y1(X)− y0(X)| | S = 0] ≥ E [|h∗1(X)− h∗0(X)| | S = 0]−E [|h∗0(X)− y0(X)| | S = 0]

−E [|h∗1(X)− y1(X)| | S = 0] .

By Lemma 30,

E [|h∗1(X)− y1(X)| | S = 0] ≤ E [|h∗1(X)− y1(X)| | S = 1] + DTV(P0∥P1).

Therefore,

E [|y1(X)− y0(X)| | S = 0] ≥ E [|h∗1(X)− h∗0(X)| | S = 0]− 2λ−DTV(P0∥P1).

where λ ≜ ∑s∈{0,1} E [|h∗s (X)− ys(X)| | S = s] /2. Hence,

max
s∈{0,1}

E [|y1(X)− y0(X)| | S = s] ≥ max
s∈{0,1}

E [|h∗1(X)− h∗0(X)| | S = s]− 2λ−DTV(P0∥P1). (B.45)

By a slight modification of the proof of Theorem 3, we have

inf
h:X→[0,1]

max
s∈{0,1}

E [|h(X)− ys(X)| | S = s] ≥ 1
2

(
max

s∈{0,1}
E [|y1(X)− y0(X)| | S = s]−DTV(P0∥P1)

)
.

(B.46)

Substituting (B.45) into (B.46) leads to

inf
h∈H

max
s∈{0,1}

E [|h(X)− ys(X)| | S = s] ≥ inf
h:X→[0,1]

max
s∈{0,1}

E [|h(X)− ys(X)| | S = s]

≥ 1
2

(
max

s∈{0,1}
E [|h∗1(X)− h∗0(X)| | S = s]− 2λ− 2DTV(P0∥P1)

)
.

(B.47)
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Finally, since max{a, b} ≤ a + b and {h∗s }s∈{0,1} is the set of optimal split classifiers, then

max
s∈{0,1}

inf
h∈H

E [|h(X)− ys(X)| | S = s] = max
s∈{0,1}

E [|h∗s (X)− ys(X)| | S = s] ≤ 2λ. (B.48)

Combining (B.47) with (B.48) gives

ϵHsplit ≥
1
2

max
s∈{0,1}

E [|h∗1(X)− h∗0(X)| | S = s]−DTV(P0∥P1)− 3λ.

B.4.2 Proof of Proposition 7

Proof. By the triangle inequality, infh∈Hmaxs∈{0,1} E [|h(X)− ys(X)| | S = s] ≤ I + II where

I ≜ inf
h∈H

max
s∈{0,1}

E [|h(X)− h∗(X)| | S = s] ,

II ≜ max
s∈{0,1}

E [|h∗(X)− ys(X)| | S = s] ,

and h∗ is defined in (B.19). Since max{a, b} ≤ a + b, we have I ≤ 2 infh∈H E [|h(X̄)− h∗(X̄)|] where

the random variable X̄ follows the probability distribution (P0 + P1)/2. By Barron’s approximation

bounds [25],

inf
h∈H

E [|h(X̄)− h∗(X̄)|] ≤ diam(X )C√
k

, (B.49)

where C ≜
∫

Rd ∥w∥2|h̃∗(w)|dw, h̃∗(w) ≜ 1
(2π)d

∫
X h∗(x) exp(−iwx)dx. Moreover, by the proof of

Theorem 3 (see Appendix B.2.2), we have

II ≤ min
s∈{0,1}

√
E [(y1(X)− y0(X))2 | S = s] ·

√
1−DTV(P0∥P1).

To summarize, if the hypothesis class contains feedforward neural network models with one layer of

sigmoidal functions, the H-benefit-of-splitting has an upper bound below.

ϵHsplit = inf
h∈H

max
s∈{0,1}

E [|h(X)− ys(X)| | S = s]− max
s∈{0,1}

inf
h∈H

E [|h(X)− ys(X)| | S = s]

≤ min
s∈{0,1}

√
E [(y1(X)− y0(X))2 | S = s] ·

√
1−DTV(P0∥P1) +

2diam(X )C√
k

.
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B.4.3 Proof of Corollary 2

We approach Corollary 2 by proving a more general result.

Lemma 31. For any hypothesis H, there exists a probability distribution QS,X,Y whose H-benefit-of-splitting

is at least

1
2

sup
h1,h0∈H

x∈X

|h1(x)− h0(x)|.

Proof. For any ϵ > 0, there exist two classifiers h∗1 , h∗0 ∈ H and x∗ ∈ X such that

|h∗1(x∗)− h∗0(x∗)| ≥ sup
h1,h0∈H

x∈X

|h1(x)− h0(x)| − ϵ. (B.50)

Now we construct a probability distribution QS,X,Y with QY|X,S(1|x, s) = h∗s (x), QX|S=s(x) = δ(x−
x∗), QS(s) = 0.5 for s ∈ {0, 1} where δ(·) is the Dirac delta function. Our lower bound in Theorem 5

implies that ϵHsplit ≥ 1
2 |h∗1(x∗) − h∗0(x∗)| which, due to (B.50), can be further lower bounded by

1
2 (suph1,h0∈H,x∈X |h1(x)− h0(x)| − ϵ). Since this lower bound of ϵHsplit holds for any ϵ > 0, one can

let ϵ be sufficiently small which leads to the desired conclusion.

B.4.4 Proof of Theorem 6

We introduce the empirical benefit-of-splitting and bound its difference from the sample-limited-

splitting (see Definition 11).

Definition 27. For a given hypothesis class H and ns i.i.d. samples {(xs,i, ys,i)}ns
i=1 from group

s ∈ {0, 1}, the empirical-splitting is defined as

ϵ̂split,emp ≜ inf
h∈H

max
s∈{0,1}

∑ns
i=1 |h(xs,i)− ys,i|

ns
− max

s∈{0,1}
inf

h∈H
∑ns

i=1 |h(xs,i)− ys,i|
ns

. (B.51)

Lemma 32. Let H be a hypothesis class from X to {0, 1} with VC dimension D. Then with probability at

least 1− δ,

∣∣ϵ̂split − ϵ̂split,emp
∣∣ ≤ 4 max

s∈{0,1}

√
2D log(6ns) + 2 log(16/δ)

ns
, (B.52)

where ns is the number of samples from group s ∈ {0, 1}.

Proof. Corollary 3.8 and Theorem 4.3 in [11] together imply that with probability at least 1− δ, for
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any s ∈ {0, 1} and h ∈ H,∣∣∣∣∣∑
ns
i=1 |h(xs,i)− ys,i|

ns
−E [|h(X)− ys(X)| | S = s]

∣∣∣∣∣ ≤ 2

√
2D log(6ns) + 2 log(8/δ)

ns
.

Therefore, for any hs ∈ H with s ∈ {0, 1}∣∣∣∣∣ max
s∈{0,1}

∑ns
i=1 |hs(xs,i)− ys,i|

ns
− max

s∈{0,1}
E [|hs(X)− ys(X)| | S = s]

∣∣∣∣∣ ≤ 2 max
s∈{0,1}

√
2D log(6ns) + 2 log(8/δ)

ns
.

(B.53)

Recall that

ϵ̂split = max
s∈{0,1}

E
[
|ĥ∗(X)− ys(X)| | S = s

]
− max

s∈{0,1}
E
[
|ĥ∗s (X)− ys(X)| | S = s

]
.

Now by (B.53), we conclude that

∣∣∣ϵ̂split − ϵ̂split,emp

∣∣∣ ≤ 4 max
s∈{0,1}

√
2D log(6ns) + 2 log(8/δ)

ns
.

Since the upper and lower bounds of ϵHsplit (see Theorem 5) hold for any underlying distribution

PS,X,Y. One can plug in the empirical distribution and obtain the corresponding bounds for ϵ̂split,emp.

Then we obtain the desired bounds for ϵ̂split by using Lemma 32 for bounding the difference between

ϵ̂split,emp and ϵ̂split.

B.5 Proofs for Section 4.8

B.5.1 Proof of Proposition 9

Proof. First, we define

∆( f ) ≜ lim
ϵ→0

M(P̃0)−M(P0)

ϵ
, (B.54)

where P̃0(x) is the perturbed distribution defined in (4.20). Then we prove that

∆( f ) = E [ f (X)ψ(X)|S = 0] .
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Note that an alternative way [see e.g., 129] to define influence functions is in terms of the Gâteaux

derivative:

∑
x∈X

ψ(x)P0(x) = 0,

and

lim
ϵ→0

1
ϵ
(M ((1− ϵ)P0 + ϵQ)−M (P0)) = ∑

x∈X
ψ(x)Q(x), ∀Q ∈ P .

In particular, we can choose Q(x) =
(

1
MU

f (x) + 1
)

P0(x), where MU ≜ sup{| f (x)| | x ∈ X}+ 1.

Then

(1− ϵ)P0(x) + ϵQ(x) = P0(x) +
ϵ

MU
f (x)P0(x).

For simplicity, we use P0 + ϵ f P0 and P0 +
ϵ

MU
f P0 to represent P0(x) + ϵ f (x)P0(x) and P0(x) +

ϵ
MU

f (x)P0(x), respectively. Then

∆( f ) = lim
ϵ→0

1
ϵ
(M(P0 + ϵ f P0)−M(P0))

= lim
ϵ→0

MU
ϵ

(
M

(
P0 +

ϵ

MU
f P0

)
−M(P0)

)
= MU lim

ϵ→0

1
ϵ
(M((1− ϵ)P0 + ϵQ)−M(P0))

= MU ∑
x∈X

ψ(x)Q(x)

= MU ∑
x∈X

ψ(x)
(

1
MU

f (x) + 1
)

P0(x)

= ∑
x∈X

ψ(x) f (x)P0(x)

= E [ f (X)ψ(X)|S = 0] .

Following from Cauchy-Schwarz inequality,

E [ f (X)ψ(X)|S = 0] ≥ −
√

E [ f (X)2|S = 0]
√

E [ψ(X)2|S = 0] = −
√

E [ψ(X)2|S = 0].

Here the equality can be achieved by choosing

f (x) =
−ψ(x)√

E [ψ(X)2|S = 0]
.
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B.5.2 Proof of Proposition 10

Proof. When the disparity metric is a linear combination of K different disparity metrics:

M(P0) =
K

∑
i=1

λiMi(P0),

the influence function, following from Definition 14, is

ψ(x) = lim
ϵ→0

M ((1− ϵ)P0 + ϵδx)−M(P0)

ϵ
(B.55)

=
K

∑
i=1

λi lim
ϵ→0

Mi ((1− ϵ)P0 + ϵδx)−Mi(P0)

ϵ
(B.56)

=
K

∑
i=1

λiψi(x). (B.57)

B.5.3 Proofs of Proposition 11

We first show that the disparity metrics in Table 4.1 can be expressed in terms of P0 when PŶ|X,

PY|X,S, P1, and PS are given. To start with, we express PS,X,Y,Ŷ as:

PS,X,Y,Ŷ = PŶ|XPY|X,SPSPX|S. (B.58)

Note that h(x) = PŶ|X(1|x). In what follows, we use these observations to express each of the

disparity metrics in Table 1 as M(P0) (i.e., a function of P0).

1. SP.

Pr(Ŷ = 0|S = 0)− Pr(Ŷ = 0|S = 1) = E [(1− h(X))|S = 0]−E [(1− h(X))|S = 1]

= − ∑
x∈X

h(x)P0(x) + ∑
x∈X

h(x)P1(x). (B.59)

2. FDR.

Pr(Y = 0|Ŷ = 1, S = 0)− Pr(Y = 0|Ŷ = 1, S = 1)

=
Pr(Y = 0, Ŷ = 1, S = 0)

Pr(Ŷ = 1, S = 0)
− Pr(Y = 0, Ŷ = 1, S = 1)

Pr(Ŷ = 1, S = 1)

=
∑x∈X PŶ|X(1|x)PY|X,S=0(0|x)P0(x)

∑x∈X PŶ|X(1|x)P0(x)
−

∑x∈X PŶ|X(1|x)PY|X,S=1(0|x)P1(x)

∑x∈X PŶ|X(1|x)P1(x)
. (B.60)
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3. FNR.

Pr(Ŷ = 0|Y = 1, S = 0)− Pr(Ŷ = 0|Y = 1, S = 1)

=
∑x∈X PŶ|X(0|x)PY|X,S=0(1|x)P0(x)

∑x∈X PY|X,S=0(1|x)P0(x)
−

∑x∈X PŶ|X(0|x)PY|X,S=1(1|x)P1(x)

∑x∈X PY|X,S=1(1|x)P1(x)
. (B.61)

4. FPR.

Pr(Ŷ = 1|Y = 0, S = 0)− Pr(Ŷ = 1|Y = 0, S = 1)

=
∑x∈X PŶ|X(1|x)PY|X,S=0(0|x)P0(x)

∑x∈X PY|X,S=0(0|x)P0(x)
−

∑x∈X PŶ|X(1|x)PY|X,S=1(0|x)P1(x)

∑x∈X PY|X,S=1(0|x)P1(x)
. (B.62)

Now we are in a position to prove Proposition 11.

Proof. Influence function for SP. Recall that

Pr(Ŷ = 0|S = 0) = 1− ∑
x∈X

h(x)P0(x).

When we perturb the distribution P0, the classifier h(x) and Pr(Ŷ = 1|S = 1) do not change.

Therefore,

ψ(x) = lim
ϵ→0
−1

ϵ

(
∑

x′∈X
h(x′)((1− ϵ)P0(x′) + ϵδx(x′))− ∑

x′∈X
h(x′)P0(x′)

)

= −h(x) + Pr(Ŷ = 1|S = 0).

Influence function for FNR. Next, we compute the influence function of FNR. Similar analysis

holds for FPR and FDR. Due to the factorization of the joint distribution, we have

Pr(Ŷ = 0|Y = 1, S = 0) =
∑x′∈X PŶ|X(0|x′)PY|X,S=0(1|x′)P0(x′)

∑x′∈X PY|X,S=0(1|x′)P0(x′)
.

We denote r1(x) ≜ PŶ|X(0|x)PY|X,S=0(1|x) and r2(x) ≜ PY|X,S=0(1|x). Then

Pr(Ŷ = 0|Y = 1, S = 0) = ∑x′∈X r1(x′)P0(x′)
∑x′∈X r2(x′)P0(x′)

=
E [r1(X)|S = 0]
E [r2(X)|S = 0]

,
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which implies

M((1− ϵ)P0 + ϵδx)

=
∑x′∈X r1(x′)((1− ϵ)P0(x′) + ϵδx(x′))
∑x′∈X r2(x′)((1− ϵ)P0(x′) + ϵδx(x′))

− Pr(Ŷ = 0|Y = 1, S = 1)

=
E [r1(X)|S = 0] + ϵ (r1(x)−E [r1(X)|S = 0])
E [r2(X)|S = 0] + ϵ (r2(x)−E [r2(X)|S = 0])

− Pr(Ŷ = 0|Y = 1, S = 1).

Therefore,

ψ(x) = lim
ϵ→0

1
ϵ
(M((1− ϵ)P0 + ϵδx)−M(P0))

=
E [r2(X)|S = 0] r1(x)−E [r1(X)|S = 0] r2(x)

E [r2(X)|S = 0]2

=
Pr(Y = 1|S = 0)r1(x)− Pr(Ŷ = 0, Y = 1|S = 0)r2(x)

Pr(Y = 1|S = 0)2

=
PŶ|X(0|x)PY|X,S=0(1|x)− Pr(Ŷ = 0|Y = 1, S = 0)PY|X,S=0(1|x)

Pr(Y = 1|S = 0)
.
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Appendix C

Appendix to Chapter 5

C.1 Proofs for Section 5.4

C.1.1 Proof of Lemma 11

Proof. By the definition of χ2-information,

χ2(X; Y) + 1 =
|X |
∑
x=1

|Y|
∑
y=1

PX,Y(x, y)
PX(x)PY(y)

PX,Y(x, y).

Note that QX,Y = D−
1
2

X PX,YD−
1
2

Y which implies

tr(QX,YQT
X,Y) = tr(D−

1
2

X PX,YD−1
Y PT

X,YD−
1
2

X ) = tr(D−1
X PX,YD−1

Y PT
X,Y)

=
|X |
∑
x=1

|Y|
∑
y=1

PX,Y(x, y)
PX(x)

PX,Y(x, y)
PY(y)

.

Therefore,

χ2(X; Y) = tr(QX,YQT
X,Y)− 1 = tr(A)− 1.

Since

QS,Y = D−
1
2

S PS,YD−
1
2

Y = D−
1
2

S PS,XD−
1
2

X D−
1
2

X PX,YD−
1
2

Y = QS,XQX,Y,

then

χ2(S; Y) = tr(QS,YQT
S,Y)− 1 = tr(QS,XQX,YQT

X,YQT
S,X)− 1 = tr(BA)− 1.

200



C.1.2 Proof of Lemma 12

Proof. For 0 ≤ ϵ1 < ϵ2 < ϵ3 ≤ χ2(S; X), it suffices to show that

Fχ2(ϵ3; PS,X)− Fχ2(ϵ1; PS,X)

ϵ3 − ϵ1
≤

Fχ2(ϵ2; PS,X)− Fχ2(ϵ1; PS,X)

ϵ2 − ϵ1
,

which is equivalent to

ϵ2 − ϵ1

ϵ3 − ϵ1
Fχ2(ϵ3; PS,X) +

ϵ3 − ϵ2

ϵ3 − ϵ1
Fχ2(ϵ1; PS,X) ≤ Fχ2(ϵ2; PS,X). (C.1)

Let PY1|X and PY3|X be two optimal solutions in D(ϵ1; PS,X) and D(ϵ3; PS,X), respectively. Assume

that Y1 and Y3 take values in [m1] and [m3], respectively. Furthermore, we denote λ ≜ ϵ2−ϵ1
ϵ3−ϵ1

. Next,

we introduce a new privacy mechanism defined as

PYλ |X(y|x) ≜


λPY3|X(y|x) if y ∈ [m3],

(1− λ)PY1|X(y−m3|x) if y−m3 ∈ [m1].
(C.2)

Consequently, we have

PYλ
(y) =


λPY3(y) if y ∈ [m3],

(1− λ)PY1(y−m3) if y−m3 ∈ [m1].

Then

χ2(X; Yλ) = E

[
PX,Yλ

(X, Yλ)

PX(X)PYλ
(Yλ)

]
− 1

= ∑
y∈[m3]

|X |
∑
x=1

PX,Yλ
(x, y)2

PX(x)PYλ
(y)

+ ∑
y−m3∈[m1]

|X |
∑
x=1

PX,Yλ
(x, y)2

PX(x)PYλ
(y)
− 1

= ∑
y∈[m3]

|X |
∑
x=1

PYλ |X(y|x)2PX(x)
PYλ

(y)
+ ∑

y−m3∈[m1]

|X |
∑
x=1

PYλ |X(y|x)2PX(x)
PYλ

(y)
− 1

= ∑
y∈[m3]

|X |
∑
x=1

λ2PY3|X(y|x)2PX(x)
λPY3(y)

+ ∑
y∈[m1]

|X |
∑
x=1

(1− λ)2PY1|X(y|x)2PX(x)
(1− λ)PY1(y)

− 1

= λχ2(X; Y3) + (1− λ)χ2(X; Y1).

Similarly, we have

χ2(S; Yλ) = λχ2(S; Y3) + (1− λ)χ2(S; Y1) ≤ ϵ2, (C.3)
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which implies that PYλ |X ∈ D(ϵ2; PS,X). Therefore,

Fχ2(ϵ2; PS,X) ≥ χ2(X; Yλ)

= λχ2(X; Y3) + (1− λ)χ2(X; Y1)

=
ϵ2 − ϵ1

ϵ3 − ϵ1
Fχ2(ϵ3; PS,X) +

ϵ3 − ϵ2

ϵ3 − ϵ1
Fχ2(ϵ1; PS,X), (C.4)

which implies that (C.1) is true, so Fχ2(ϵ; PS,X) is a concave function. Furthermore, ϵ→ 1
ϵ Fχ2(ϵ; PS,X)

is non-increasing since Fχ2(ϵ; PS,X) is non-negative and concave.

C.1.3 Proof of Theorem 7

Proof. The lower bound for Fχ2(ϵ; PS,X) follows immediately from the concavity of Fχ2(ϵ; PS,X) and

Fχ2(0; PS,X) ≥ 0,

Fχ2

(
χ2(S; X); PS,X

)
= χ2(X; X) = |X | − 1.

Using Lemma 11, the χ2-privacy-utility function can be simplified as

Fχ2(ϵ; PS,X) = max
PY|X∈D(ϵ;PS,X)

tr(A)− 1,

D(ϵ; PS,X) = {PY|X | S→ X → Y, tr(BA)− 1 ≤ ϵ},

where

A = QX,YQT
X,Y, B = QT

S,XQS,X .

We denote the singular value decomposition of QS,X and QX,Y by QS,X = WΣΣΣ1UT and QX,Y =

VΣΣΣ2MT , respectively. Then B = UΣΣΣT
1 ΣΣΣ1UT = UΣΣΣBUT , A = VΣΣΣ2ΣΣΣT

2 VT = VΣΣΣAVT where ΣΣΣB ≜ ΣΣΣT
1 ΣΣΣ1

and ΣΣΣA ≜ ΣΣΣ2ΣΣΣT
2 .

Let A1 = UTAU = LΣΣΣALT where L ≜ UTV. Suppose the diagonal elements of A1 are a1, ..., a|X |.

Then, from characterization 3 in Theorem 1, we have

tr(BA)− 1 = a1 − 1 +
d+1

∑
i=2

λi−1(S; X)ai. (C.5)

Suppose the i-th row of L is li = (li,1, ..., li,|X |), the i-th column of U is uT
i and ΣΣΣA = diag(σ1, ..., σ|X |).

By characterization 3 in Theorem 1, σ1 = 1, σj+1 = λj(X; Y) for j = 1, ..., d and σj+1 = 0 for
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j = d + 1, ..., |X | − 1. Then, for ∀i ∈ [|X |],

0 ≤ ai =
|X |
∑
j=1

σjl2
i,j ≤

|X |
∑
j=1

l2
ij = 1.

Since, following from characterization 3 in Theorem 1, the first column of U and that of V are both

(
√

PX(1), ...,
√

PX(|X |))T , then l1 = u1V = (1, 0, ..., 0). Therefore, a1 = σ1 = 1. If PY|X ∈ D(ϵ; PS,X),

then (C.5) shows

tr(BA)− 1 =
d+1

∑
i=2

λi−1(S; X)ai ≤ ϵ,

which implies that

(a2, ..., a|X |) ∈ D|X |−1
ϵ (λ1(S; X), ..., λd(S; X)).

Thus,

Fχ2(ϵ; PS,X) ≤ max
(a2,...,a|X |)

∈D|X |−1
ϵ (λ1(S;X),...,λd(S;X))

|X |
∑
i=2

ai

= G|X |−1
ϵ (λ1(S; X), ..., λd(S; X)),

as required.

Next, we derive a closed-form expression of Gm
ϵ (t1, ..., tn). Recall that, for ti ∈ [0, 1] (i ∈ [n]),

0 ≤ ϵ ≤ ∑i∈[n] ti, and n ≤ m, Gm
ϵ (t1, ..., tn) is defined as:

Gm
ϵ (t1, ..., tn) ≜ max

{
m

∑
i=1

xi

∣∣∣ (x1, ..., xm) ∈ Dm
ϵ (t1, ..., tn)

}
,

where

Dm
ϵ (t1, ..., tn) ≜

{
(x1, ..., xm)

∣∣∣ n

∑
i=1

tixi ≤ ϵ, xi ∈ [0, 1], i ∈ [m]

}
.

We assume 1 ≥ t1 ≥ ... ≥ tn−s > tn−s+1 = ... = tn = 0 without loss of generality. Then we divide

[0, ∑n
i=1 ti] into n− s intervals:[

0,
n

∑
i=1

ti

]
=

n−1−s⋃
j=0

[
n−s

∑
i=n−s−j+1

ti,
n−s

∑
i=n−s−j

ti

]
.

If ϵ ∈
[
∑n−s

i=n−s−j+1 ti, ∑n−s
i=n−s−j ti

]
, then

Gm
ϵ (t1, ..., tn) = s + (m− n) + j +

ϵ−∑n−s
i=n−s−j+1 ti

tn−s−j
, (C.6)
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and it can be achieved by setting

xi = 1, for i = n− s− j + 1, ..., m,

xn−s−j =
ϵ−∑n−s

i=n−s−j+1 ti

tn−s−j
,

xi = 0, for i = 1, ..., n− s− j− 1.

C.1.4 Proof of Corollary 3

Proof. First, Fχ2(ϵ; PS,X) is non-decreasing since, for any 0 ≤ ϵ1 < ϵ2 ≤ χ2(S; X), we haveD(ϵ1; PS,X) ⊆
D(ϵ2; PS,X). Now suppose there exist ϵ1 and ϵ2, such that Fχ2(ϵ1; PS,X) = Fχ2(ϵ2; PS,X). We denote

χ2(S; X) by ϵ0. Since Fχ2(ϵ; PS,X) is a concave and non-decreasing function, then for any ϵ > ϵ1,

Fχ2(ϵ; PS,X) = Fχ2(ϵ1; PS,X). In particular, Fχ2(ϵ1; PS,X) = Fχ2(ϵ0; PS,X) = |X | − 1. This contradicts

the upper bound of χ2-privacy-utility function in Theorem 7 since the upper bound implies that

Fχ2(ϵ; PS,X) < |X | − 1 when ϵ < ϵ0.

C.1.5 Proof of Theorem 8

Proof. Following from characterization 2 in Theorem 1, there exists f ∈ L2(PX) such that ∥ f (X)∥2 =

1, E [ f (X)] = 0 and ∥E [ f (X)|S] ∥2
2 = λmin(S; X).

Fix Y = {1, 2} and the privacy mechanism is defined as

PY|X(y|x) =
1
2
+ (−1)y

√
PX min f (x)

2
. (C.7)

Since

1 = || f (X)||22 =
|X |
∑
x=1

f (x)2PX(x) ≥ f (x)2PX(x),

for any x ∈ [|X |]
| f (x)| ≤ 1√

PX(x)
≤ 1√

PX min
.

Therefore,
∣∣∣√PX min f (x)

2

∣∣∣ ≤ 1
2 , which implies that PY|X(y|x) is feasible. Furthermore, PY(y) = 1

2

because of E [ f (X)] = 0.

χ2(X; Y) =
|X |
∑
x=1

|Y|
∑
y=1

PY|X(y|x)2PX(x)
PY(y)

− 1 =
|X |
∑
x=1

(PX(x) + PX min f (x)2PX(x))− 1 = PX min.
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Since

PY|S(y|s) =
|X |
∑
x=1

PY|X(y|x)PX|S(x|s) =
|X |
∑
x=1

(
1
2
+ (−1)y

√
PX min f (x)

2

)
PX|S(x|s)

=
1
2
+ (−1)y

√
PX min

2
E [ f (X)|S = s] ,

then

χ2(S; Y) =
|S|
∑
s=1

|Y|
∑
y=1

PY|S(y|s)2PS(s)
PY(y)

− 1 =
|S|
∑
s=1

(
PS(s) + PX minE [ f (X)|S = s]2 PS(s)

)
− 1

= PX minλmin(S; X).

Hence, this Y satisfies χ2(X; Y) = PX min and χ2(S; Y) = PX minλmin(S; X).

C.2 Proofs for Section 5.5

C.2.1 Proof of Lemma 13

Proof. Suppose || f (S)||2 = 1 without loss of generality. Observe that

E [E [ f (S)|X]] = E [ f (S)] = 0.

Since f (S)→ X → Y, then E [ f (S)|X] = E [ f (S)|X, Y]. Therefore,

mmse

(
E [ f (S)|X]

||E [ f (S)|X] ||2

∣∣∣∣∣Y
)

=
E
[
E [ f (S)|X]2

]
−E

[
E [E [ f (S)|X] |Y]2

]
||E [ f (S)|X] ||22

=
E
[
E [ f (S)|X]2

]
−E

[
E [E [ f (S)|X, Y] |Y]2

]
||E [ f (S)|X] ||22

= 1−
E
[
E [ f (S)|Y]2

]
||E [ f (S)|X] ||22

= E
[

f (S)2
]
−

E
[
E [ f (S)|Y]2

]
||E [ f (S)|X] ||22

≤ E
[

f (S)2
]
−E

[
E [ f (S)|Y]2

]
= mmse( f (S)|Y),

where the last inequality follows from Jensen’s inequality:

1 = E
[

f (S)2
]
= E

[
E
[

f (S)2|X
]]
≥ E

[
E [ f (S)|X]2

]
= ||E [ f (S)|X] ||22.
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C.3 Proofs for Section 5.6

C.3.1 Proof of Lemma 14

Proof. For fixed a, b ∈ Rn where ai > 0 and bi ≥ 0, let LP : Rn → R and LD : Rn → R be given by

LP(y) ≜ aTy,

LD(u) ≜ aTb + uTb + ∥u∥2.

Furthermore, we define A(a) ≜ {u ∈ Rn | u ≥ −a} and B(b) ≜ {y ∈ Rn | ∥y∥2 ≤ 1, y ≤ b}.
Assume, without loss of generality, that b1/a1 ≤ b2/a2 ≤ · · · ≤ bn/an, and let k∗ be defined in

(5.20). Note that b1 ≤ 1 and for k ∈ [k∗]

k

∑
i=1

b2
i ≤

a2
k

∑n
i=k a2

i

(
1−

k−1

∑
i=1

b2
i

)+

+
k−1

∑
i=1

b2
i ,

so ∑k
i=1 b2

i ≤ 1. Especially, ∑k∗
i=1 b2

i ≤ 1. For cj ≜

√ (
1−∑

j
i=1 b2

i

)
∥a∥2

2−∑
j
i=1 a2

i

, let

y∗ = (b1, . . . , bk∗ , ak∗+1ck∗ , . . . , anck∗)

and

u∗ = (−b1/ck∗ , . . . ,−bk∗/ck∗ ,−ak∗+1, . . . ,−an).

From the definition of k∗, y∗ ∈ B(b) and u∗ ∈ A(a). Furthermore,

LP(y∗) = aTy∗

=
k∗

∑
i=1

aibi +
n

∑
i=k∗+1

ck∗ a2
i

=
k∗

∑
i=1

aibi +

√√√√(∥a∥2
2 −

k∗

∑
i=1

a2
i

)(
1−

k∗

∑
i=1

b2
i

)
, (C.8)
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and

LD(u∗) = aTb + u∗Tb + ∥u∗∥2

=
k∗

∑
i=1

(
aibi −

b2
i

c∗k

)
+ c−1

k∗

√√√√ k∗

∑
i=1

b2
i + c2

k∗

(
∥a∥2

2 −
k∗

∑
i=1

a2
i

)

=
k∗

∑
i=1

aibi + c−1
k∗

(
1−

k∗

∑
i=1

b2
i

)

=
k∗

∑
i=1

aibi +

√√√√(∥a∥2
2 −

k∗

∑
i=1

a2
i

)(
1−

k∗

∑
i=1

b2
i

)
= LP(y∗).

Since both the primal and the dual achieve the same value at y∗ and u∗, respectively, it follows that

the value LP(y∗) given in (C.8) is optimal.

C.3.2 Proof of Theorem 9

Proof. Let

h(x) ≜


ρ−1

0 (ϕ(x)−∑m
i=1 ρiϕi(x)) if ρ0 > 0,

0 otherwise.
(C.9)

Note that when ρ0 > 0, we have ∥h(X)∥2 = 1. Then for any ψ ∈ L2(PY) and ∥ψ(Y)∥2 = 1,

|E [ϕ(X)ψ(Y)]| =
∣∣∣∣∣ρ0E [h(X)ψ(Y)] +

m

∑
i=1

ρiE [ϕi(X)ψ(Y)]

∣∣∣∣∣
≤ ρ0 |E [h(X)ψ(Y)]|+

m

∑
i=1
|ρiE [ϕi(X)ψ(Y)]|

= ρ0

∣∣∣E [h(X)(TY|Xψ)(X)
]∣∣∣+ m

∑
i=1

∣∣∣ρiE
[
ϕi(X)(TY|Xψ)(X)

]∣∣∣ ,

where TY|X is defined in Section 5.3. Denoting |E
[

h(X)(TY|Xψ)(X)
]
| ≜ x0, |E

[
ϕi(X)(TY|Xψ)(X)

]
| ≜

xi, x ≜ (x0, x1, . . . , xm), the last inequality can be rewritten as

|E [ϕ(X)ψ(Y)]| ≤ ρT
0 x. (C.10)

Observe that ∥x∥2 ≤ 1 and xi ≤ νi for i ∈ [m], and the right hand side of (C.10) can be maximized

over all values of x that satisfy these constraints. We assume, without loss of generality, that ρ0 > 0

(otherwise set x0 = 0). The left-hand side of (C.10) can be further bounded by

|E [ϕ(X)ψ(Y)]| ≤ Lm+1(ρ0, ννν0), (C.11)
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where ννν0 = (1, ν1, . . . , νm) and Lm+1 is defined in (5.19). The result follows directly from Lemma 14

and noting that maxψ∈L2(PY)
E [ϕ(X)ψ(Y)] = ∥E [ϕ(X)|Y] ∥2.

C.3.3 Proof of Theorem 10

Proof. For any ψ ∈ L2(PY) with ∥ψ(Y)∥2 = 1, let αi ≜ E [ψ(Y)ψi(Y)], α0 ≜
√

1−∑t
i=i α2

i and

ψ0(Y) ≜ α−1
0 (ψ(Y)−∑t

i=1 αiψi(Y)) if α0 > 0, otherwise ψ0(Y) ≜ 0. Observe that ∥ψ0(Y)∥2 = 1 when

α0 > 0. Also, E
[
ϕi(X)ψj(Y)

]
= 0 for i ̸= j, i ∈ {0, . . . , m}, j ∈ [t]. Consequently,

E [ϕ(X)ψ(Y)] = E

[(
m

∑
i=0

ρiϕi(X)

)(
t

∑
j=0

αjψj(Y)

)]

=
m

∑
i=0

t

∑
j=0

ρiαjE
[
ϕi(X)ψj(Y)

]
≤

∣∣∣∣∣∣α0

m

∑
i=0,i/∈[t]

ρiE [ϕi(X)ψ0(Y)]

∣∣∣∣∣∣+
t

∑
i=1
|νiρiαi|

≤ |α0|Bm−t (ρ̃, ν̃νν) +
t

∑
i=1
|νiρiαi| (C.12)

≤

√√√√ t

∑
k=1

ν2
i ρ2

i + Bm−t (ρ̃, ν̃νν)2. (C.13)

Inequality (C.12) follows from the similar proof of Theorem 9, and (C.13) follows by observing that

∑t
i=0 α2

i = 1 and applying Cauchy-Schwarz inequality.

Finally, when ρ0 = 0 and t = m, (C.13) can be achieved with equality by taking

ψ(Y) = ∑m
i=1 νiρiψi(Y)√

∑m
i=1 ν2

i ρ2
i

.
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Appendix D

Appendix to Chapter 6

D.1 Proofs for Section 6.4

D.1.1 Proof of Lemma 15

Consider the following elementary lemma whose proof is included for the sake of completeness.

Lemma 33. Let Q1, Q2 ∈ P and W ∈ W be given. For each i ∈ {1, 2}, let Si → Xi → Yi be such that

PSi ,Xi = Qi and PYi |Xi
= W. Then,

∥PS1,Y1 − PS2,Y2∥1 ≤ ∥Q1 −Q2∥1. (D.1)

Proof. By the definition of ∥ · ∥1, we have that

∥PS1,Y1 − PS2,Y2∥1 = ∑
s∈S

∑
y∈Y
|PS1,Y1(s, y)− PS2,Y2(s, y)|. (D.2)

By assumption, for each i ∈ {1, 2}, PSi ,Yi (s, y) = ∑x Qi(s, x)W(x, y). Hence, by the triangle inequality,

∥PS1,Y1 − PS2,Y2∥1 ≤ ∑
y∈Y

∑
s∈S

∑
x∈X
|Q1(s, x)−Q2(s, x)|W(x, y) (D.3)

= ∥Q1 −Q2∥1, (D.4)

where we used the fact that ∑y W(x, y) = 1 for all x ∈ X .

The proof of Lemma 15 relies on the following elementary observation: Let n ∈N. If ai, bi ∈ R
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for all i = 1, . . . , n, then ∣∣∣∣ max
i=1,...,n

ai − max
i=1,...,n

bi

∣∣∣∣ ≤ max
i=1,...,n

|ai − bi| ≤
n

∑
i=1
|ai − bi|. (D.5)

Proof. For ease of notation, let ∆L ≜ |Lc(Q1, W)−Lc(Q2, W)|. For each i ∈ {1, 2}, let Si → Xi → Yi

be such that PSi ,Xi = Qi and PYi |Xi
= W. With this notation, Lc(Qi, W) = Pc(Si|Yi) where

Pc(Si|Yi) = ∑
y∈Y

max
s∈S

PSi ,Yi (s, y). (D.6)

By the triangle inequality, we have that

∆L ≤ ∑
y∈Y

∣∣∣∣max
s∈S

PS1,Y1(s, y)−max
s∈S

PS2,Y2(s, y)
∣∣∣∣ . (D.7)

An immediate application of (D.5) leads to

∆L ≤ ∑
y∈Y

∑
s∈S
|PS1,Y1(s, y)− PS2,Y2(s, y)| (D.8)

= ∥PS1,Y1 − PS2,Y2∥1 (D.9)

≤ ∥Q1 −Q2∥1, (D.10)

where the last inequality follows from Lemma 33. Mutatis mutandis, it can be shown that

|Uc(Q1, W)−Uc(Q2, W)| ≤ ∥Q1 −Q2∥1, (D.11)

as required.

D.1.2 Proof of Lemma 16

The proof of the following lemma is similar to the one of Lemma 33. The details are left to the reader.

Lemma 34. Let Q1, Q2 ∈ P and W ∈ W be given. For each i ∈ {1, 2}, let Si → Xi → Yi be such that

PSi ,Xi = Qi and PYi |Xi
= W. Then,

∥PY1 − PY2∥1 ≤ max{∥PS1 − PS2∥1, ∥PX1 − PX2∥1} ≤ ∥Q1 −Q2∥1. (D.12)

Now we are in position to prove Lemma 16.

Proof. For ease of notation, let ∆L ≜ |L f (Q1, W)−L f (Q2, W)|. For each i ∈ {1, 2}, let Si → Xi → Yi

be such that PSi ,Xi = Qi and PYi |Xi
= W. With this notation, L f (Qi, W) = I f (PSi ,Yi ). By the definition
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of f -information, we have that

∆L =

∣∣∣∣ ∑
s∈S

∑
y∈Y

(
PS1(s)PY1(y) f

(
PS1,Y1(s, y)

PS1(s)PY1(y)

)
− PS2(s)PY2(y) f

(
PS2,Y2(s, y)

PS2(s)PY2(y)

)) ∣∣∣∣. (D.13)

An application of the triangle inequality leads to ∆L ≤ I + II, where

I = ∑
s∈S

∑
y∈Y
|PS1(s)PY1(y)− PS2(s)PY2(y)|

∣∣∣∣ f ( PS1,Y1(s, y)
PS1(s)PY1(y)

)∣∣∣∣ , (D.14)

II = ∑
s∈S

∑
y∈Y

PS2(s)PY2(y)
∣∣∣∣ f ( PS1,Y1(s, y)

PS1(s)PY1(y)

)
− f

(
PS2,Y2(s, y)

PS2(s)PY2(y)

)∣∣∣∣ . (D.15)

First we provide an upper bound for I. Recall the definition of the supremum norm in (6.40). Observe

that PSi ,Yi (s, y) ≤ PYi (y) for all i ∈ {1, 2}, s ∈ S , and y ∈ Y . Hence, for all s ∈ S and y ∈ Y ,

max
{

PS1,Y1(s, y)
PS1(s)PY1(y)

,
PS2,Y2(s, y)

PS2(s)PY2(y)

}
≤ max

{
1

PS1(s)
,

1
PS2(s)

}
≤ m−1

S , (D.16)

and thus
∣∣∣∣ f ( PS1,Y1(s, y)

PS1(s)PY1(y)

)∣∣∣∣ ≤ K f ,m−1
S

, as | f (t)| ≤ K f ,m−1
S

for all t ∈ [0, m−1
S ]. As a consequence,

I ≤ K f ,m−1
S

∑
s∈S

∑
y∈Y
|PS1(s)PY1(y)− PS2(s)PY2(y)| (D.17)

≤ K f ,m−1
S

∑
s∈S

∑
y∈Y

[
PY1(y)|PS1(s)− PS2(s)|+ PS2(s)|PY1(y)− PY2(y)|

]
(D.18)

= K f ,m−1
S

(
∥PS1 − PS2∥1 + ∥PY1 − PY2∥1

)
. (D.19)

By Lemma 34, we conclude that

I ≤ 2K f ,m−1
S
∥Q1 −Q2∥1. (D.20)

Now we focus on II. Recall that f is locally Lipschitz by assumption, and thus it is Lipschitz on

[0, m−1
S ]. As defined in (6.41), let L f ,m−1

S
be the Lipschitz constant of f on the latter interval. Hence,

(D.16) implies that∣∣∣∣ f ( PS1,Y1(s, y)
PS1(s)PY1(y)

)
− f

(
PS2,Y2(s, y)

PS2(s)PY2(y)

)∣∣∣∣ ≤ L f ,m−1
S

∣∣∣∣ PS1,Y1(s, y)
PS1(s)PY1(y)

− PS2,Y2(s, y)
PS2(s)PY2(y)

∣∣∣∣ . (D.21)

As a result, we have that

II ≤ L f ,m−1
S

∑
s∈S

∑
y∈Y

|PS2(s)PY2(y)PS1,Y1(s, y)− PS1(s)PY1(y)PS2,Y2(s, y)|
PS1(s)PY1(y)

. (D.22)
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By the triangle inequality, the numerator of the quotient in (D.22) is upper bounded by

PS1,Y1(s, y)|PS2(s)PY2(y)− PS1(s)PY1(y)|+ PS1(s)PY1(y)|PS1,Y1(s, y)− PS2,Y2(s, y)|. (D.23)

In particular,

II ≤ L f ,m−1
S

∑
s∈S

∑
y∈Y

PS1,Y1(s, y)
PS1(s)PY1(y)

|PS2(s)PY2(y)− PS1(s)PY1(y)| (D.24)

+ L f ,m−1
S

∑
s∈S

∑
y∈Y
|PS1,Y1(s, y)− PS2,Y2(s, y)| (D.25)

≤ m−1
S L f ,m−1

S

(
∥PY1 − PY2∥1 + ∥PS1 − PS2∥1

)
+ L f ,m−1

S
∥PS1,Y1 − PS2,Y2∥1, (D.26)

where the last inequality follows from (D.16) and the argument used in (D.19). Hence, Lemma 33

and Lemma 34 imply that

II ≤
(

2m−1
S + 1

)
L f ,m−1

S
∥Q1 −Q2∥1. (D.27)

Since ∆L ≤ I + II, we conclude that

∆L ≤
(

2K f ,m−1
S

+
(

2m−1
S + 1

)
L f ,m−1

S

)
∥Q1 −Q2∥1. (D.28)

Mutatis mutandis, it can be shown that

|U f (Q1, W)−U f (Q2, W)| ≤
(

2K f ,m−1
X

+
(

2m−1
X + 1

)
L f ,m−1

X

)
∥Q1 −Q2∥1. (D.29)

The proof is complete.

D.1.3 Proof of Theorem 13

Proof. By choosing Q1 = P̂n and Q2 = P in Lemma 16, we have

|L f (P̂n, W)−L f (P, W)| ≤ C f ,mS∥P̂n − P∥1, (D.30)

where

mS = min

{{
∑

x∈X
P̂n(s, x) : s ∈ S

}
∪
{

∑
x∈X

P(s, x) : s ∈ S
}}

. (D.31)
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Observe that, for all s ∈ S ,

∑
x∈X

P(s, x) ≥ ∑
x∈X

P̂n(s, x)− ∑
x∈X
|P̂n(s, x)− P(s, x)| (D.32)

≥ ∑
x∈X

P̂n(s, x)− ∥P̂n − P∥1. (D.33)

In particular, we have that

mS ≥
(

min

{
∑

x∈X
P̂n(s, x) : s ∈ S

}
− ∥P̂n − P∥1

)
+

. (D.34)

Inequality (6.27) shows that, with probability at least 1− β,

∥P̂n − P∥1 ≤
√

2
n
(|S| · |X | − log β), (D.35)

and, thus, mS ≥ mS whenever (D.35) holds true. Recall the definitions of Kg,u and Lg,u in (6.40) and

(6.41), respectively. It is straightforward to verify that the mappings u 7→ K f ,u and u 7→ L f ,u are

non-decreasing. Since the mapping u 7→ u−1 is non-increasing, we conclude that

u 7→ C f ,u = 2K f ,u−1 + (2u−1 + 1)L f ,u−1 (D.36)

is non-increasing. Therefore, under (D.35), we have

C f ,mS ≤ C f ,mS . (D.37)

Combining (D.30), (D.35) and (D.37), we have that, with probability at least 1− β,

|L f (P̂n, W)−L f (P, W)| ≤ C f ,mS

√
2
n
(|S| · |X | − log β). (D.38)

Mutatis mutandis, it can be shown that

|U f (P̂n, W)−U f (P, W)| ≤ C f ,mX

√
2
n
(|S| · |X | − log β), (D.39)

whenever (D.35) holds true.

D.1.4 Proof of Proposition 15

Proof. Assume that S̃, X̃ and X̃0 satisfy that PS̃,X̃ = P̂n and X̃0 = Πγ(X̃). With this notation, it can be

verified that S̃→ X̃ → X̃0 and

PS̃,X̃0
= P̂nPX̃0|X̃ = P̂γ, (D.40)
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where, by definition, (
P̂nPX̃0|X̃

)
(s, x0) = ∑

x∈X
P̂n(s, x)PX̃0|X̃(x0|x). (D.41)

By assumption,W∗(P̂γ; ϵ) ̸= ∅. Let W̃ ∈ W∗(P̂γ; ϵ), i.e.,

L f (P̂γ, W̃) ≤ ϵ and U f (P̂γ, W̃) = H f (P̂γ; ϵ). (D.42)

Let Ỹ0 be such that S̃→ X̃ → X̃0 → Ỹ0 and PỸ0|X̃0
= W̃. Observe that PỸ0|X̃ = PX̃0|X̃W̃. In particular,

PS̃,Ỹ0
= P̂nPỸ0|X̃ = P̂nPX̃0|X̃W̃ = P̂γW̃, (D.43)

where the last equality follows from (D.40). Therefore,

L f (P̂γ, W̃) = I f (PS̃,Ỹ0
) = L f (P̂n, PỸ0|X̃). (D.44)

Furthermore, Lemma 17 implies that

U f (P̂γ, W̃) = I f (PX̃0,Ỹ0
) = I f (PX̃,Ỹ0

) = U f (P̂n, PỸ0|X̃). (D.45)

By (D.42), (D.44) and (D.45), we have

L f (P̂n, PỸ0|X̃) ≤ ϵ and U f (P̂n, PỸ0|X̃) = H f (P̂γ; ϵ). (D.46)

Recall that, by definition, H f (P̂n; ϵ) = supW U f (P̂n, W) where the supremum is taken over all W ∈ W
such that L f (P̂n, W) ≤ ϵ. Thus, (D.46) implies that

H f (P̂n; ϵ) ≥ U f (P̂n, PỸ0|X̃) = H f (P̂γ; ϵ), (D.47)

as we wanted to prove.

D.1.5 Proof of Lemma 18

Proof. For ease of notation, let ∆L ≜ |LA
α (Q1, W)−LA

α (Q2, W)|. For each i ∈ {1, 2}, let Si → Xi → Yi

be such that PSi ,Xi = Qi and PYi |Xi
= W. With this notation,

∆L = |IA
α (PS1,Y1)− IA

α (PS2,Y2)| (D.48)

=
α

α− 1

∣∣∣∣∣log
∑y ∥PS1,Y1(·, y)∥α

∑y ∥PS2,Y2(·, y)∥α
− log

∥PS1(·)∥α

∥PS2(·)∥α

∣∣∣∣∣ , (D.49)
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where the second equality follows directly from the definition of Arimoto’s mutual information. By

the triangle inequality, we obtain that
α− 1

α
∆L ≤ I + II where

I ≜

∣∣∣∣∣log
∑y ∥PS1,Y1(·, y)∥α

∑y ∥PS2,Y2(·, y)∥α

∣∣∣∣∣ , (D.50)

II ≜
∣∣∣∣log
∥PS1(·)∥α

∥PS2(·)∥α

∣∣∣∣ . (D.51)

Notice that if a, b > 0, then
∣∣∣log

a
b

∣∣∣ ≤ |a− b|
min{a, b} . Hence,

I ≤

∣∣∣∑y ∥PS1,Y1(·, y)∥α −∑y ∥PS2,Y2(·, y)∥α

∣∣∣
min{∑y ∥PS1,Y1(·, y)∥α, ∑y ∥PS2,Y2(·, y)∥α}

. (D.52)

Observe that, by the triangle inequality,∣∣∣∣ ∑
y∈Y
∥PS1,Y1(·, y)∥α − ∑

y∈Y
∥PS2,Y2(·, y)∥α

∣∣∣∣ ≤ ∑
y∈Y

∣∣∣∥PS1,Y1(·, y)∥α − ∥PS2,Y2(·, y)∥α

∣∣∣. (D.53)

By Minkowski’s inequality, |∥a∥α − ∥b∥α| ≤ ∥a− b∥α for every a, b ∈ Rn and α ≥ 1. Therefore,∣∣∣∣ ∑
y∈Y
∥PS1,Y1(·, y)∥α − ∑

y∈Y
∥PS2,Y2(·, y)∥α

∣∣∣∣ ≤ ∑
y∈Y
∥PS1,Y1(·, y)− PS2,Y2(·, y)∥α (D.54)

≤ ∑
y∈Y
∥PS1,Y1(·, y)− PS2,Y2(·, y)∥1, (D.55)

= ∥PS1,Y1 − PS2,Y2∥1, (D.56)

where the second inequality follows from the fact that ∥a∥α ≤ ∥a∥1 for all a ∈ Rn and α ≥ 1. By

assumption, we have that PY1|X1
= W = PY2|X2

. Hence, Lemma 33 implies that

∥PS1,Y1 − PS2,Y2∥1 ≤ ∥Q1 −Q2∥1. (D.57)

This leads to ∣∣∣∣∣∑y∈Y ∥PS1,Y1(·, y)∥α − ∑
y∈Y
∥PS2,Y2(·, y)∥α

∣∣∣∣∣ ≤ ∥Q1 −Q2∥1. (D.58)

For i ∈ {1, 2}, Minkowski’s inequality implies that

∑
y∈Y
∥PSi ,Yi (·, y)∥α ≥

∥∥∥∥ ∑
y∈Y

PSi ,Yi (·, y)
∥∥∥∥

α

= ∥PSi (·)∥α. (D.59)
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The generalized mean inequality implies that

∥PSi (·)∥α ≥ |S|1/α−1∥PSi (·)∥1 = |S|1/α−1, (D.60)

as ∥PSi (·)∥1 = ∑s PSi (s) = 1. Hence,

∑
y∈Y
∥PSi ,Yi (·, y)∥α ≥ |S|1/α−1. (D.61)

Therefore, by plugging (D.58) and (D.61) in (D.52),

I ≤ |S|1−1/α∥Q1 −Q2∥1. (D.62)

Similarly, we have that

II ≤ |∥PS2(·)∥α − ∥PS1(·)∥α|
min{∥PS2(·)∥α, ∥PS1(·)∥α}

. (D.63)

As in (D.56) and (D.57),

|∥PS2(·)∥α − ∥PS1(·)∥α| ≤ ∥PS1 − PS2∥1 ≤ ∥Q1 −Q2∥1. (D.64)

As established in (D.61), for all i ∈ {1, 2},

∥PSi (·)∥α ≥ |S|1/α−1. (D.65)

Thus, II ≤ |S|1−1/α∥Q1 −Q2∥1. Since
α− 1

α
∆L ≤ I + II, we conclude that

|LA
α (Q1, W)−LA

α (Q2, W)| ≤ 2α

α− 1
|S|1−1/α∥Q1 −Q2∥1. (D.66)

Mutatis mutandis, one can obtain that

|UA
α (Q1, W)−UA

α (Q2, W)| ≤ 2α

α− 1
|X |1−1/α∥Q1 −Q2∥1, (D.67)

as required

D.1.6 Proof of Lemma 19

Consider the following lemma.

Lemma 35. If S1, S2 and X1, X2 are random variables supported over S and X respectively, then,

∥PS1 · PX1|S1
− PS1 · PX2|S2

∥1 ≤ 2∥PS1,X1 − PS2,X2∥1. (D.68)
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Proof. For ease of notation, let ∆ ≜ ∥PS1 · PX1|S1
− PS1 · PX2|S2

∥1. By the triangle inequality, we have

that

∆ ≤ ∥PS1 · PX1|S1
− PS2 · PX2|S2

∥1 + ∥PS2 · PX2|S2
− PS1 · PX2|S2

∥1. (D.69)

By Lemma 34, and the fact that PSi · PXi |Si
= PSi ,Xi for every i ∈ {1, 2},

∆ ≤ ∥PS1,X1 − PS2,X2∥1 + ∥PS1 − PS2∥1 ≤ 2∥PS1,X1 − PS2,X2∥1, (D.70)

as required.

Now we are in position to prove Lemma 19.

Proof. For ease of notation, let ∆L ≜ |LS
α(Q1, W)−LS

α(Q2, W)|. For each i ∈ {1, 2}, let Si → Xi → Yi

be such that PSi ,Xi = Qi and PYi |Xi
= W. Assume that α ∈ (1, ∞). Then

∆L = |IS
α(PS1,Y1)− IS

α(PS2,Y2)| (D.71)

=
α

α− 1

∣∣∣∣∣log
∑y ∥PS1(·)1/αPY1|S1

(y|·)∥α

∑y ∥PS2(·)1/αPY2|S2
(y|·)∥α

∣∣∣∣∣ , (D.72)

where the second equality follows directly from the definition of Sibson’s mutual information. Notice

that if a, b > 0, then
∣∣∣log

a
b

∣∣∣ ≤ |a− b|
min{a, b} . Hence,

∆L ≤
α

α− 1
|∑y ∥PS1(·)1/αPY1|S1

(y|·)∥α −∑y ∥PS2(·)1/αPY2|S2
(y|·)∥α|

min{∑y ∥PS1(·)1/αPY1|S1
(y|·)∥α, ∑y ∥PS2(·)1/αPY2|S2

(y|·)∥α}
. (D.73)

By Minkowski’s inequality, we have that

∑
y∈Y
∥PSi (·)1/αPYi |Si

(y|·)∥α ≥ ∥PSi (·)1/α∥α = 1, (D.74)

where we used the fact that ∑y PYi |Si
(y|s) = 1 for every s ∈ S and i ∈ {1, 2}. Hence, (D.73) becomes

∆L ≤
α

α− 1 ∑
y∈Y

∣∣∣∣∥PS1(·)1/αPY1|S1
(y|·)∥α − ∥PS2(·)1/αPY2|S2

(y|·)∥α

∣∣∣∣ (D.75)

≤ α

α− 1 ∑
y∈Y
∥PS1(·)1/αPY1|S1

(y|·)− PS2(·)1/αPY2|S2
(y|·)∥α, (D.76)

where the last inequality follows from another application of Minkowski’s inequality. Since ∥a∥α ≤
∥a∥1 for all a ∈ Rn and α > 1, we obtain that

∆L ≤
α

α− 1 ∑
y∈Y
∥PS1(·)1/αPY1|S1

(y|·)− PS2(·)1/αPY2|S2
(y|·)∥1. (D.77)
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Observe that, for each i ∈ {1, 2},

PSi (s)
1/αPYi |Si

(y|s) = ∑
x∈X

PSi (s)
1/αPXi |Si

(x|s)W(x, y). (D.78)

Thus, a straightforward manipulation leads to

∆L ≤
α

α− 1 ∑
y∈Y

∑
x∈X
∥PS1(·)1/αPX1|S1

(x|·)− PS2(·)1/αPX2|S2
(x|·)∥1W(x, y) (D.79)

=
α

α− 1 ∑
x∈X
∥PS1(·)1/αPX1|S1

(x|·)− PS2(·)1/αPX2|S2
(x|·)∥1. (D.80)

By adding and subtracting the term PS1(·)1/αPX2|S2
(x|·) inside the norm in (D.80), Minkowski’s

inequality implies that
α− 1

α
∆L ≤∑x Ix + ∑x IIx where, for each x ∈ X ,

Ix ≜ ∥PS1(·)1/α(PX1|S1
(x|·)− PX2|S2

(x|·))∥1, (D.81)

IIx ≜ ∥(PS1(·)1/α − PS2(·)1/α)PX2|S2
(x|·)∥1. (D.82)

Observe that, for each x ∈ X ,

Ix = ∑
s∈S

PS1(s)
1/α|PX1|S1

(x|s)− PX2|S2
(x|s)| (D.83)

= ∑
s∈S

PS1(s)
PS1(s)

1−1/α
|PX1|S1

(x|s)− PX2|S2
(x|s)|. (D.84)

Since PS1(s) ≥ mS for all s ∈ S , we obtain that

∑
x∈X

Ix ≤
1

m1−1/α
S

∑
x∈X

∑
s∈S

PS1(s)|PX1|S1
(x|s)− PX2|S2

(x|s)| (D.85)

=
∥PS1 · PX1|S1

− PS1 · PX2|S2
∥1

m1−1/α
S

. (D.86)

Therefore, Lemma 35 leads to

∑
x∈X

Ix ≤
2∥Q1 −Q2∥1

m1−1/α
S

. (D.87)

By definition, IIx = ∑s |PS1(s)
1/α − PS2(s)

1/α|PX2|S2
(x|s) for every x ∈ X . Hence,

∑
x∈X

IIx = ∑
s∈S
|PS1(·)1/α − PS2(·)1/α|. (D.88)

Since the function t 7→ t1/α is Lipschitz continuous on [mS, 1] with Lipschitz constant (αm1−1/α
S )−1,

∑
x∈X

IIx ≤
∥PS1 − PS2∥1

αm1−1/α
S

≤ ∥Q1 −Q2∥1

αm1−1/α
S

, (D.89)
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where the last inequality follows from Lemma 34. By (D.87) and (D.89), we conclude that

∆L ≤
2α + 1
α− 1

∥Q1 −Q2∥1

m1−1/α
S

. (D.90)

Mutatis mutandis, it can be shown that

|US
α (Q1, W)−US

α (Q2, W)| ≤ 1
α− 1

∥Q1 −Q2∥1

m1−1/α
X

. (D.91)

Recall that limα→∞ IS
α(PX,Y) = IS

∞(PX,Y) [276]. Therefore, (6.70) follows after taking the limit

α→ ∞ in both sides of (D.91). Using a similar argument as above, it can be shown that

∆L ≤ ∑
s∈S

∑
x∈X
|PX1|S1

(x|s)− PX2|S2
(x|s)| (D.92)

≤ 1
mins′ PS1(s

′) ∑
s∈S

∑
x∈X

PS1(s)|PX1|S1
(x|s)− PX2|S2

(x|s)| (D.93)

=
∥PS1 · PX1|S1

− PS1 · PX2|S2|∥1

mins′ PS1(s
′)

. (D.94)

By applying Lemma 35 and noting that mins′ PS1(s
′) = mins′ ∑x Q1(s′, x), the result follows.

D.1.7 Proof of Lemma 20

Proof. For ease of notation, let ∆L ≜ |Lmax
α (Q1, W)− Lmax

α (Q2, W)|. For each i ∈ {1, 2}, let Si →
Xi → Yi be such that PSi ,Xi = Qi and PYi |Xi

= W. Observe that PYi |Si
= PXi |Si

W where, by definition,

(
PXi |Si

W
)
(y|s) = ∑

x∈X
PXi |Si

(x|s)W(x, y). (D.95)

In particular,

Lmax
α (Qi, W) ≜ sup

PS̃

IA
α (PS̃ · PYi |Si

) (D.96)

= sup
PS̃

IA
α (PS̃ · PXi |Si

W). (D.97)

By the definition of LA
α (Q, W), we have that

Lmax
α (Qi, W) = sup

PS̃

LA
α (PS̃ · PXi |Si

, W). (D.98)

It is easy to verify that if I is an arbitrary index set and aι, bι ∈ R for all ι ∈ I , then∣∣∣∣∣sup
ι∈I

aι − sup
ι∈I

bι

∣∣∣∣∣ ≤ sup
ι∈I
|aι − bι|. (D.99)
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Therefore, (D.98) implies that

∆L =

∣∣∣∣∣sup
PS̃

LA
α (PS̃ · PX1|S1

, W)− sup
PS̃

LA
α (PS̃ · PX2|S2

, W)

∣∣∣∣∣ (D.100)

≤ sup
PS̃

∣∣∣LA
α (PS̃ · PX1|S1

, W)−LA
α (PS̃ · PX2|S2

, W)
∣∣∣ . (D.101)

By Lemma 18, we obtain that

∆L ≤
2α

α− 1
|S|1−1/α sup

PS̃

∥PS̃ · PX1|S1
− PS̃ · PX2|S2

∥1. (D.102)

A straightforward computation shows that, for any PS̃,

∥PS̃ · PX1|S1
− PS̃ · PX2|S2

∥1 = ∑
s∈S

PS̃(s)∥PX1|S1
(·|s)− PX2|S2

(·|s)∥1 (D.103)

≤ ∑
s∈S
∥PX1|S1

(·|s)− PX2|S2
(·|s)∥1 (D.104)

≤ 1
mins′ PS1(s

′) ∑
s∈S

PS1(s)∥PX1|S1
(·|s)− PX2|S2

(·|s)∥1 (D.105)

=
∥PS1 · PX1|S1

− PS1 · PX2|S2
∥1

mins′ PS1(s
′)

. (D.106)

Therefore, Lemma 35 implies that

sup
PS̃

∥PS̃ · PX1|S1
− PS̃ · PX2|S2

∥1 ≤
2∥Q1 −Q2∥
mins′ PS1(s

′)
. (D.107)

By (D.102) and (D.107), we conclude that

∆L ≤
4α

α− 1
|S|1−1/α

mins′ PS1(s
′)
∥Q1 −Q2∥1. (D.108)

By noting that mins′ PS1(s
′) = mins′ ∑x Q1(s′, x), (6.74) follows. Finally, note that Umax

α (Q, W) only

depends on W. Therefore, Umax
α (Q1, W) = Umax

α (Q2, W) which trivially leads to (6.75).

D.2 Proofs for Section 6.5

D.2.1 Proof of Lemma 21

Lemma 21 is an immediate consequence of the following standard result whose proof is included for

the sake of completeness.

Lemma 36. Let (A, dA) and (B, dB) be two metric spaces. If f : A×B → R satisfies that
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(i) | f (a1, b)− f (a2, b)| ≤ dA(a1, a2) for all a1, a2 ∈ A and b ∈ B;

(ii) f (a, ·) is continuous over B for all a ∈ A;

then f (·, ·) is continuous over A×B.

Proof. In order to prove the continuity of f (·, ·) over A× B, we will show that for any sequence

{(an, bn)}∞
n=0 such that limn(an, bn) = (a0, b0), it holds true that limn f (an, bn) = f (a0, b0).

Let {(an, bn)}∞
n=0 be such that limn(an, bn) = (a0, b0). By the triangle inequality, for every n ∈N,

| f (an, bn)− f (a0, b0)| ≤ | f (an, bn)− f (a0, bn)|+ | f (a0, bn)− f (a0, b0)| (D.109)

≤ dA(an, a0) + | f (a0, bn)− f (a0, b0)|, (D.110)

where the last inequality follows from assumption (i). By assumption (ii), f (a0, ·) is continuous over

B. Since limn(an, bn) = (a0, b0) is equivalent to limn an = a0 and limn bn = b0, we conclude that

lim
n→∞

| f (an, bn)− f (a0, b0)| = 0, (D.111)

as required.

D.2.2 Proof of Proposition 16

We start recalling an elementary fact about convergent sequences in metric spaces, see, e.g., [233,

Exercise 2.4.11].

Theorem 20. LetM be a metric space. A sequence (an)∞
n=1 ⊂M converges to a ∈ M if and only if every

subsequence of (an)∞
n=1 has a further subsequence which converges to a.

We proceed with the proof of Proposition 16.

Proof. In order to prove the continuity of H(·; ϵ) over {Q ∈ Q : ϵmin(Q) < ϵ}, we will show that for

any sequence (Qn)∞
n=0 ⊂ {Q ∈ Q : ϵmin(Q) < ϵ} such that

lim
n→∞

∥Qn −Q0∥1 = 0, (D.112)

it holds true that

lim
n→∞

H(Qn; ϵ) = H(Q0; ϵ). (D.113)

In order to prove (D.113), Theorem 20 implies that it is enough to show that any subsequence

(H(Qnk ; ϵ))∞
k=1 has a further subsequence converging to H(Q0; ϵ).
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Let (nk)
∞
k=1 ⊂N be given. By Remark 14, there exists (W∗nk

)∞
k=1 ⊂ WN such that, for each k ≥ 1,

we have that L(Qnk , W∗nk
) ≤ ϵ and

H(Qnk ; ϵ) = U (Qnk , W∗nk
). (D.114)

Since the spaceWN is compact, there exists a further subsequence (nkj
)∞

j=1 such that

lim
j→∞

W∗nkj
= W0, (D.115)

for some W0 ∈ WN . Lemma 21 shows that U (·, ·) is continuous over Q×WN . Then (D.112) and

(D.115) imply that

U (Q0, W0) = lim
j→∞
U (Qnkj

, W∗nkj
) = lim

j→∞
H(Qnkj

; ϵ), (D.116)

where the second equality follows from (D.114). A similar reasoning shows that

L(Q0, W0) = lim
j→∞
L(Qnkj

, W∗nkj
) ≤ ϵ. (D.117)

Therefore, by the maximality of H(Q0; ϵ),

lim
j→∞

H(Qnkj
; ϵ) = U (Q0, W0) ≤ H(Q0; ϵ). (D.118)

Next, we show that limj H(Qnkj
; ϵ) ≥ H(Q0; ϵ). Recall that, by assumption, ϵmin(Q0) < ϵ.

Let δ > 0 be such that ϵmin(Q0) ≤ ϵ − δ. By condition (C.3), there exists W ′0 ∈ WN such that

L(Q0, W ′0) ≤ ϵ− δ and U (Q0, W ′0) = H(Q0; ϵ− δ). By the Lipschitz continuity given in condition

(C.2) and (D.112),

lim
j→∞
L(Qnkj

, W ′0) = L(Q0, W ′0) ≤ ϵ− δ, (D.119)

lim
j→∞
U (Qnkj

, W ′0) = U (Q0, W ′0) = H(Q0; ϵ− δ). (D.120)

In particular, for j large enough we have that L(Qnkj
, W ′0) ≤ ϵ and, by the maximality of H(Qnkj

; ϵ),

lim
j→∞

H(Qnkj
; ϵ) ≥ lim

j→∞
U (Qnkj

, W ′0) = H(Q0; ϵ− δ), (D.121)

where the last equality follows from (D.120). Recall that, by condition (C.1), the mapping H(Q0; ·) is

continuous over [ϵmin(Q0), ∞). Hence, by taking limits in (D.121),

lim
j→∞

H(Qnkj
; ϵ) ≥ lim

δ↓0
H(Q0; ϵ− δ) = H(Q0; ϵ). (D.122)
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By combining (D.118) and (D.122), we conclude that

lim
j→∞

H(Qnkj
; ϵ) = H(Q0; ϵ), (D.123)

as required.

D.2.3 Proof of Corollary 5

Before we prove Corollary 5, let us recall two standard results from analysis on metric spaces, see,

e.g., Chapter 0.1 in [231] and Lemma 14 in [261], respectively.

Lemma 37. Let fn : [a, b] → R be a non-decreasing function for each n ∈ N. If there exists a continuous

function f : [a, b]→ R such that lim
n→∞

fn(x) = f (x) for all x ∈ [a, b], then fn converges uniformly to f .

Lemma 38. Let A and B be two metric spaces with B compact. If f : A×B → R is continuous, then the

function g : A → R defined by g(a) ≜ inf
b∈B

f (a, b) is also continuous.

Observe that the infimum in the previous lemma can be replaced by a supremum. We proceed

with the proof of Corollary 5.

Proof. We first introduce

ϵmax(Q) ≜ max{L(Q, W) : W ∈ WN}. (D.124)

Observe that, by the maximality of ϵmax(Q), for all ϵ ≥ ϵmax(Q),

H(Q; ϵ) = H(Q; ϵmax(Q)). (D.125)

By Lemma 21 the function L(·, ·) is continuous over Q×WN . Since WN is compact, Lemma 38

implies that ϵmax(·) is continuous over Q. By hypothesis limn Pn = P, thus limn ϵmax(Pn) = ϵmax(P)

and, in particular, there exists ϵ1 > ϵ0 such that ϵmax(Pn) ≤ ϵ1 for all n ∈ N. By (D.125), for all

ϵ ≥ ϵ1 and all n ∈N,

H(Pn; ϵ) = H(Pn; ϵmax(Pn)) = H(Pn; ϵ1). (D.126)

Observe that an analogous equality holds for P. Hence, we obtain that, for all n ∈N,

sup
ϵ≥ϵ1

|H(Pn; ϵ)−H(P; ϵ)| = |H(Pn; ϵ1)−H(Pn; ϵ1)|. (D.127)

As established by Proposition 16, the right hand side of (D.127) vanishes as n goes to infinity.

Hence, we conclude that H(Pn; ·) converge uniformly to H(P; ·) over [ϵ1, ∞). Finally, recall that the
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function H(Pn; ·) is non-decreasing over [ϵ0, ϵ1] for each n ∈ N. Furthermore, by condition (C.1),

the function H(P; ·) is continuous over [ϵ0, ϵ1]. Therefore, Proposition 16 and Lemma 37 imply that

H(Pn; ·) converges uniformly to H(P; ·) over [ϵ0, ϵ1]. This shows that uniform convergence holds over

[ϵ0, ∞).

D.2.4 Proof of Theorem 16

The following lemma follows directly from Lemma 38 by noticing that L(·, ·) is continuous over

Q×WN andWN is compact.

Lemma 39. Assume that conditions (C.1–3) hold true for a given closed set Q ⊆ P and a given N ∈ N.

Then ϵmin(·), as given in (6.85), is continuous over Q.

We prove the following lemma which will be used in the proof of Theorem 16.

Lemma 40. Assume that conditions (C.1) and (C.3) hold true for a given closed set Q ⊆ P and a given

N ∈N. Then the setW∗N(P; ϵ), defined in (6.84), is compact.

Proof. Observe that

W∗N(P; ϵ) = {W ∈ WN : L(P, W) ≤ ϵ} ∩ {W ∈ WN : U (P, W) = H(P; ϵ)}. (D.128)

Recall that, by condition (C.1), the mappings L(P, ·) and U (P, ·) are continuous. Since both sets in

the RHS of (D.128) are the preimage of a closed set under a continuous function, they are closed.

Therefore,W∗N(P; ϵ) is closed as the finite intersection of closed sets is closed. Finally, we conclude

thatW∗N(P; ϵ) is compact since it is a closed subset of the compact setWN .

Observe that, by Lemma 39, limn ϵmin(Pn) = ϵmin(P) whenever limn Pn = P. Hence, if ϵmin(P) <

ϵ, then ϵmin(Pn) < ϵ for n large enough. Therefore, under the assumptions of Theorem 16, for n

large enough we have that the set W∗(Pn; ϵ) is non-empty and, by condition (C.3), W∗N(Pn; ϵ) is

non-empty as well. Now we are in position to prove Theorem 16.

Proof. We assume, without loss of generality, thatW∗N(Pn; ϵ) is non-empty for all n ∈N. In order to

reach contradiction, assume that (6.90) does not hold true, i.e., there exists W∗n ∈ W∗N(Pn; ϵ) such that

lim sup
n→∞

dist(Wn,W∗N(P; ϵ)) > 0. (D.129)
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Since WN and W∗N(P; ϵ) are compact from Lemma 40, a routine argument shows that there exist

a subsequence (W∗nk
)∞

k=1 and W0 ∈ WN such that limk W∗nk
= W0 and W0 ̸∈ W∗N(P; ϵ). Lemma 21

shows that L(·, ·) is continuous over Q×WN . Therefore, we have

L(P, W0) = lim
k→∞
L(Pnk , W∗nk

) ≤ ϵ. (D.130)

Hence, by the maximality of the privacy-utility function, U (P, W0) ≤ H(P; ϵ). Using a similar

argument, one can show that

U (P, W0) = lim
k→∞
U (Pnk , W∗nk

) = lim
k→∞

H(Pnk , ϵ) = H(P; ϵ), (D.131)

where the last equality follows from the fact that the mapping H(·; ϵ) is continuous, as established in

Proposition 16. Altogether,

L(P, W0) ≤ ϵ and U (P, W0) = H(P; ϵ). (D.132)

Therefore, W0 ∈ W∗N(P; ϵ) which contradicts the fact that W0 /∈ W∗N(P; ϵ).

Furthermore, by the strong law of large numbers, (P̂n)∞
n=1 converges almost surely to P as n goes

to infinity. Therefore, if Pn = P̂n, then

Pr
(

lim
n→∞

dist(W∗n ,W∗N(P; ϵ)) = 0
)
= 1, (D.133)

as claimed.

Note that in the previous proof we implicitly assume that, for each n ∈N, the (possibly random)

privacy mechanism W∗n ∈ W∗N(P̂n; ϵ) is a random variable, i.e., a measurable function. This is a

minor subtlety given the rareness of non-measurable sets (functions) [212].

D.2.5 Proof of Theorem 17

Before we prove Theorem 17, let us recall some definitions and theorems from set-valued analysis

[20].

Given two metric spaces A and B, a set-valued mapping F from A to B, denoted by F : A⇝ B,

is a function from A to the subsets of B. The domain of a set-valued mapping F : A⇝ B is defined

as

Dom(F) ≜ {a ∈ A : F(a) ̸= ∅}. (D.134)
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For r > 0, Ar(a) ≜ {a′ ∈ A : dA(a, a′) < r} where dA denotes the metric associated to A.

Definition 28 (Definition 1.4.1, [20]). A set-valued mapping F : A⇝ B is called upper semicontin-

uous at a ∈ Dom(F) if and only if for every neighborhood N of F(a) there exists r > 0 such that

F(a′) ⊂ N for all a′ ∈ Ar(a). A set-valued mapping is said to be upper semicontinuous if and only

if it is upper semicontinuous at every point of its domain.

Definition 29 (Definition 1.4.2, [20]). A set-valued mapping F : A⇝ B is called lower semicontinuous

at a ∈ Dom(F) if and only if for every b ∈ F(a) and every sequence (an)∞
n=1 ⊂ Dom(F) with

limn an = a, there exists a sequence (bn)∞
n=1 such that bn ∈ F(an) for each n ∈N and limn bn = b. A

set-valued mapping is said to be lower semicontinuous if and only if it is lower semicontinuous at

every point of its domain.

By definition, a the set-valued mapping F : A⇝ B is continuous at a ∈ A if and only if it is both

upper and lower semicontinuous at a.

Theorem 21 (Theorem 1.4.13, [20]). Let F be a set-valued map from a complete metric space A to a complete

separable metric space B. If F is upper semicontinuous, then it is continuous on a residual set of A.

The proof of Theorem 17 relies on the following lemma.

Lemma 41. Assume that conditions (C.1–3) hold true for a given closed set Q ⊆ P and a given N ∈N. For

any ϵ ∈ R, the set-valued mappingW∗N(·; ϵ) is upper semicontinuous over {Q ∈ Q : ϵmin(Q) < ϵ}.

Proof. For ease of notation, let F : Q⇝WN be the set-valued mapping defined by F(Q) ≜W∗N(Q; ϵ).

Observe that Dom(F) = {Q ∈ Q : ϵmin(Q) ≤ ϵ}. In order to reach contradiction, assume that the set-

valued mapping F is not upper semicontinuous over {Q ∈ Q : ϵmin(Q) < ϵ}. In this case, there exist

a joint distribution Q ∈ Q with ϵmin(Q) < ϵ and a neighborhood N of F(Q) such that for every r > 0

there exists Qr ∈ Qr(Q) with F(Qr) ̸⊂ N . For each n ∈N, let W∗n be such that W∗n ∈ F(Q1/n) ∩N c,

where N c denotes the complement of N w.r.t.WN . Since N c is closed andWN is compact, we have

that N c is also compact. Hence, there exists a subsequence (W∗nk
)∞

k=1 converging to some W ∈ N c.

Since F(Q) ⊂ N , we have that W ̸∈ F(Q). Recall that limk Q1/nk
= Q by construction, and thus

Corollary 6 implies that W ∈ W∗N(Q; ϵ). Since this contradicts the fact that W ̸∈ W∗N(Q; ϵ), we

conclude that F is necessarily upper semicontinuous over {Q ∈ Q : ϵmin(Q) < ϵ}.

Now we are in position to prove Theorem 17.
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Proof. For ease of notation, let

Q(δ) ≜ {Q ∈ Q : ϵmin(Q) + δ ≤ ϵ}. (D.135)

Observe that Q(δ) ⊂ {Q ∈ Q : ϵmin(Q) < ϵ}. Thus, Lemma 41 implies that the mapping W∗N(·; ϵ)

is upper semicontinuous over Q(δ). Observe that both Q(δ) and WN are compact metric spaces.

Therefore, Theorem 21 establishes the lower semicontinuity of the mappingW∗N(·; ϵ) on a residual

set of Q(δ). Theorem 17 follows immediately from this fact and Definition 29.

D.3 Proofs for Section 6.6

D.3.1 Proof of Lemma 22

Proof. (i) Let W ∈ WN be fixed. By condition (C.2), the mapping U (·, W) is (Lipschitz) continuous

over Qr(P̂). Since Qr(P̂) is compact, the mapping U (·, W) attains its infimum over Qr(P̂).

(ii) Assume that DQ,N(P̂; ϵ, r) is non-empty. By (i), we have that

Ur(P̂, W) = min
Q∈Qr(P̂)

U (Q, W) (D.136)

is well defined. As established in Lemma 21, the mapping U (·, ·) is continuous over Q×WN and in

particular over Qr(P̂)×WN . Hence, Lemma 38 implies that Ur(P̂, ·) is continuous overWN .

Note that, by definition,

DQ,N(P̂; ϵ, r) =
⋂

Q∈Qr(P̂)

DN(Q; ϵ), (D.137)

where DN(Q; ϵ) = {W ∈ WN : L(Q, W) ≤ ϵ}. Condition (C.1) implies that, for every Q ∈ Q,

the mapping L(Q, ·) is continuous over WN . Thus, we have that DN(Q; ϵ) is compact as WN is

compact. Since the arbitrary intersection of compact sets is also compact, (D.137) readily shows that

DQ,N(P̂; ϵ, r) is compact. Therefore, the (continuous) mapping Ur(P̂, ·) attains its supremum over

DQ,N(P̂; ϵ, r), as required.

D.3.2 Proof of Theorem 18

Consider the following lemma.

Lemma 42. Assume that conditions (C.1–3) hold true for a given closed set Q ⊆ P and a given N ∈N. Let
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ϵ ∈ R and r ≥ 0 be given. If P ∈ Qr(P̂) and ϵ− CLr ≥ ϵmin(P̂), then

H(P; ϵ) ≤ H(P̂; ϵ + CLr) + CUr. (D.138)

Proof. We start proving that ϵ ≥ ϵmin(P). Remark 14 implies that there exists W ′ ∈ WN such that

L(P̂, W ′) = ϵmin(P̂). By the Lipschitz continuity given in condition (C.2), we have that

L(P, W ′) ≤ L(P̂, W ′) + |L(P̂, W ′)−L(P, W ′)| (D.139)

≤ ϵmin(P̂) + CL∥P̂− P∥1 (D.140)

≤ ϵmin(P̂) + CLr ≤ ϵ, (D.141)

where the last inequality follows from the assumption ϵ− CLr ≥ ϵmin(P̂). By the minimality of

ϵmin(P), we conclude that ϵmin(P) ≤ ϵ. Then, Remark 14 implies that there exists W ∈ WN such that

L(P, W) ≤ ϵ and

H(P; ϵ) = U (P, W). (D.142)

By the Lipschitz continuity given in condition (C.2), we have that

|U (P̂, W)−U (P, W)| ≤ CU∥P̂− P∥1 ≤ CUr. (D.143)

In particular,

H(P; ϵ) ≤ U (P̂, W) + CUr. (D.144)

Similarly, since

|L(P̂, W)−L(P, W)| ≤ CL∥P̂− P∥1 ≤ CLr, (D.145)

we have L(P̂, W) ≤ L(P, W) +CLr ≤ ϵ +CLr. Therefore, from inequality (D.144) and the maximality

of the privacy-utility function, we conclude that

H(P; ϵ) ≤ H(P̂; ϵ + CLr) + CUr, (D.146)

as we wanted to prove.

Now we are in position to prove Theorem 18.

Proof. For any W ∈ DN(P̂; ϵ− CLr), we have L(P̂, W) + CLr ≤ ϵ. By the Lipschitz continuity given

in condition (C.2), for every Q ∈ Qr(P̂),

|L(P̂, W)−L(Q, W)| ≤ CL∥P̂−Q∥1 ≤ CLr. (D.147)
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Hence, L(Q, W) ≤ ϵ and W ∈ DN(Q; ϵ) for every Q ∈ Qr(P̂). By (6.110), it follows that W ∈
DQ,N(P̂; ϵ, r).

Let W∗ ∈ W∗N(P̂; ϵ− CLr) and W† ∈ W†
Q,N(P̂; ϵ, r). By definition,

U (P̂, W∗) = H(P̂; ϵ− CLr). (D.148)

By the Lipschitz continuity given in condition (C.2), we have that

|U (P̂, W∗)−U (P, W∗)| ≤ CU∥P̂− P∥1 ≤ CUr. (D.149)

Combining (D.148) and (D.149) together, we have

U (P, W∗) ≥ H(P̂; ϵ− CLr)− CUr. (D.150)

Since W† ∈ W†
Q,N(P̂; ϵ, r) ⊂ DQ,N(P̂; ϵ, r) and P ∈ Qr(P̂), (6.110) implies that W† ∈ DN(P; ϵ). Thus,

by the maximality of H(P; ϵ), we have

U (P, W†) ≤ H(P; ϵ). (D.151)

An immediate application of Lemma 42 shows that

U (P, W†) ≤ H(P; ϵ) ≤ H(P̂; ϵ + CLr) + CUr. (D.152)

Therefore, combining (D.150) and (D.152) together,

U (P, W∗)−U (P, W†) ≥ −
(
H(P̂; ϵ + CLr)−H(P̂; ϵ− CLr) + 2CUr

)
, (D.153)

which implied the desired conclusion.

D.3.3 Proof of Theorem 19

Proof. Recall that, by Lemma 39, the mapping ϵmin(·) is continuous over Q. In particular, we

have that limn ϵmin(Pn) = ϵmin(P) whenever limn Pn = P. Since ϵmin(P) < ϵ, limn Pn = P, and

limn rn = 0, we have that ϵmin(Pn) + CLrn < ϵ for n large enough. Therefore, for n large enough, the

first part of Theorem 18 establishes that the set DQ,N(Pn; ϵ, rn) is non-empty. Furthermore, part (ii) of

Lemma 22 implies thatW†
Q,N(Pn; ϵ, rn) is non-empty as well. Without loss of generality, we assume

thatW†
Q,N(Pn; ϵ, rn) ̸= ∅ for all n ≥ 1.

In order to reach contradiction, we assume that the conclusion does not hold true, i.e., that there
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exists a sequence (W†
n )

∞
n=1 such that W†

n ∈ W†
Q,N(Pn; ϵ, rn) for all n ≥ 1 and

lim sup
n→∞

dist(W†
n ,W∗N(P; ϵ)) > 0. (D.154)

Since both WN and W∗N(P; ϵ) are compact (Lemma 40), there exists a subsequence of (W†
n )

∞
n=1

converging to some W0 ∈ WN with W0 ̸∈ W∗N(P; ϵ). Without loss of generality, we assume that

limn W†
n = W0. By the continuity of L(·, ·) established in Lemma 21,

L(P, W0) = lim
n→∞

L(Pn, W†
n ) ≤ ϵ. (D.155)

The last inequality implies that W0 ∈ DN(P; ϵ) and hence U (P, W0) ≤ H(P; ϵ). Assume that we have

already proved that U (P, W0) ≥ H(P; ϵ). In particular, we would have that U (P, W0) = H(P; ϵ) and

thus W0 ∈ W∗N(P; ϵ). Since this conclusion contradicts the fact that W0 ̸∈ W∗N(P; ϵ), the result would

follow. Now we focus on proving that U (P, W0) ≥ H(P; ϵ).

Since ϵ > ϵmin(P) and limn rn = 0, we have that ϵ− 2CLrn > ϵmin(P) for n large enough. Without

loss of generality, we assume that ϵ− 2CLrn > ϵmin(P) for all n ≥ 1. For a given n ≥ 1, let W∗0 ∈ WN

be such that L(P, W∗0 ) ≤ ϵ− 2CLrn and U (P, W∗0 ) = H(P; ϵ− 2CLrn). By condition (C.2), for any

Q ∈ Qrn(Pn),

|L(P, W∗0 )−L(Q, W∗0 )| ≤ CL∥P−Q∥1 ≤ 2CLrn, (D.156)

where the last inequality follows from the triangle inequality and the fact that P, Q ∈ Qrn(Pn). Thus,

L(Q, W∗0 ) ≤ L(P, W∗0 ) + 2CLrn ≤ ϵ, (D.157)

for any Q ∈ Qrn(Pn). Hence, W∗0 ∈ DQ,N(Pn; ϵ, rn) and, by the definition ofW†
Q,N(Pn; ϵ, rn),

min
Q∈Qrn (Pn)

U (Q, W∗0 ) ≤ min
Q∈Qrn (Pn)

U (Q, W†
n ) ≤ U (P, W†

n ). (D.158)

As in (D.156), we have that

|U (P, W∗0 )−U (Q, W∗0 )| ≤ 2CUrn. (D.159)

Therefore, for any Q ∈ Qrn(Pn),

U (Q, W∗0 ) ≥ U (P, W∗0 )− 2CUrn (D.160)

= H(P; ϵ− 2CLrn)− 2CUrn. (D.161)
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In particular, this implies that

min
Q∈Qrn (Pn)

U (Q, W∗0 ) ≥ H(P; ϵ− 2CLrn)− 2CUrn. (D.162)

Combining (D.158) and (D.162) together, we have

U (P, W†
n ) ≥ min

Q∈Qrn (Pn)
U (Q, W∗0 ) (D.163)

≥ H(P; ϵ− 2CLrn)− 2CUrn. (D.164)

Therefore, by the continuity of U (P, ·) and H(P; ·) assumed in condition (C.1),

U (P, W0) = lim
n→∞

U (P, W†
n ) (D.165)

≥ lim
n→∞

H(P; ϵ− 2CLrn)− 2CUrn (D.166)

= H(P; ϵ). (D.167)

This concludes the proof of the first part of the theorem.

Now we prove the second part of the theorem. Recall that in this case, for all n ≥ 1, Pn = P̂n and

rn ≥ (2p log(n)/n)1/2 for some p > 1. Thus,

∞

∑
n=1

Pr(∥P̂n − P∥1 ≥ rn) ≤
∞

∑
n=1

Pr

(
∥P̂n − P∥1 ≥

√
2p log(n)

n

)
(D.168)

≤ exp(|S| · |X |)
∞

∑
n=1

1
np , (D.169)

where (D.169) follows directly from (6.26). Since p > 1 by assumption, we have that ∑n 1/np is finite.

Thus, by a routine application of the Borel-Cantelli Lemma, see, e.g., [116, Sec. 2.18],

Pr
({

ω : ∥P̂n(ω)− P∥1 < rn for all n ≥ N = N(ω)
})

= 1. (D.170)

Observe that, by the last equality, the hypotheses of the first part of this theorem are satisfied almost

surely. A direct application of the former part of this theorem leads to

Pr
(

lim
n→∞

dist(W†
n ,W∗N(P; ϵ)) = 0

)
= 1. (D.171)
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