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Abstract

Training generative models with differential privacy (DP) typically involves inject-
ing noise into gradient updates or adapting the discriminator’s training procedure.
As a result, such approaches often struggle with hyper-parameter tuning and conver-
gence. We consider the slicing privacy mechanism that injects noise into random
low-dimensional projections of the private data, and provide strong privacy guar-
antees for it. These noisy projections are used for training generative models. To
enable optimizing generative models using this DP approach, we introduce the
smoothed-sliced f -divergence and show it enjoys statistical consistency. Moreover,
we present a kernel-based estimator for this divergence, circumventing the need
for adversarial training. Extensive numerical experiments demonstrate that our
approach can generate synthetic data of higher quality compared with baselines.
Beyond performance improvement, our method, by sidestepping the need for noisy
gradients, offers data scientists the flexibility to adjust generator architecture and
hyper-parameters, run the optimization over any number of epochs, and even restart
the optimization process—all without incurring additional privacy costs.

1 Introduction

Just as oil fueled the industrial revolution, data now propels innovation and progress in today’s
digital life. However, data sharing faces challenges due to privacy risks and regulatory policies
(e.g., GDPR, CCPA, FTC). Synthetic data offers a promising solution as it closely resembles real
data, retains its formats and essential properties, and can be seamlessly integrated into existing
workflows. Nonetheless, modern generative models are vulnerable to privacy attacks that could
expose individuals’ sensitive information in the original data [31, 12, 62]. Today, differential privacy
(DP) [18] stands as the de facto standard for privacy protection and it plays a crucial role in guiding
the design of synthetic data. For example, DP was used in the release of microdata from Israel’s
National Registry of live births in 2014 to protect the privacy of mothers and newborns [32], as well
as in the release of global victim-perpetrator data to ensure the privacy of victims [21]. Additionally,
a recent publication [49] by the National Institute of Standards and Technology (NIST) recommends
the use of DP algorithms in generating synthetic data to provide robust privacy protection against
rapid developments in privacy attacks.

Existing approaches to training generative models often integrate DP by injecting noise into gradient
updates or adapting the discriminator’s training procedure [76, 67, 10, 64, 3, 33, 65, 4, 51, 38, 77, 11].
They provide several benefits, such as the ability to generate diverse data types (including continuous
data, time-series, and images), scalability to high-dimensional data, and accelerated runtime using
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GPUs. However, fine-tuning hyper-parameters within these frameworks can be challenging [50, 54,
39]. Additionally, they encounter a dilemma when determining the number of training epochs: with a
fixed privacy budget, increasing the number of epochs requires injecting more noise into gradient
update per iteration, while fewer epochs might not be sufficient for the optimizer to converge. In such
a setting, if the training does not converge, the only recourse may be to increase the privacy budget.
This motivates a fundamental question:

How can we train generative models with DP guarantees while ensuring
easy fine-tuning, stable convergence, and high utility?

In this paper, we introduce a new learning paradigm for training privacy-preserving generative models.
Our approach decouples the training process into two steps: (i) computing noisy low-dimensional
projections of the private data along random directions, and (ii) updating the generative models to
fit these noisy projections. We establish DP guarantees for the first step and leverage the random
projection to further tighten our privacy bound. This decoupling strategy offers several advantages.
The post-processing property of DP ensures that any deep learning techniques can be applied in the
second step. In other words, our approach is model-agnostic, allowing for smooth integration into
existing training pipelines of generative models. With our method, data scientists have the flexibility
to adjust generator architecture and hyper-parameters, optimize the generative model for any number
of epochs, and even restart the optimization—all without worrying about additional privacy costs.

Based on this paradigm, we are motivated to introduce a new information-theoretic measure: the
smoothed-sliced f -divergence. This divergence (randomly) projects the original and synthetic data
distributions onto lower-dimensional spaces, followed by smoothing with isotropic Gaussian noise,
and averaging their f -divergence over all projections. We prove that using this divergence as the loss
function in generative model training is equivalent to the aforementioned two-step training process.
Additionally, we present a kernel-based, differentiable estimator for this divergence. It circumvents
the need for adversarial training in generative models, thereby enhancing convergence stability and
robustness to different choices of hyper-parameters. Finally, we establish the statistical consistency
of training generative models using this divergence.

In terms of the slicing mechanism, we build upon the work of [57]. They introduced the smoothed-
sliced Wasserstein distance and applied it to generative models and domain adaptation tasks. However,
their approach is limited to 1-dimensional projection spaces (k = 1), exploiting the closed-form
expression of Wasserstein distances in 1D. Moreover, their privacy analysis contains a significant flaw
in its derivation (see Remark 1 for detailed discussions). In contrast, we propose a generic framework
for training privacy-preserving generative models, applicable to any k-dimensional projections.
Empirically, we observe that setting the projection dimension to a small number (e.g., k = 2, 3)
significantly improves the quality of synthetic data compared with k = 1 under the same privacy
budget. Additionally, our kernel-based estimator eliminates the need for adversarial training in
generative models, facilitating stable convergence. Finally, we present a completely new proof
for establishing the DP guarantees of our framework. This analysis also applies to any smooth-
sliced divergence objective, for instance, we provide corrected (and improved!) DP bounds for the
smoothed-sliced Wasserstein framework of [57].

We demonstrate the effectiveness of our method through numerical experiments. We compare
generative models trained using our method with those trained by standard privacy mechanisms
(DP-SGD, PATE, or smoothed-sliced Wasserstein distance) among various real-world datasets. The
results indicate that our approach consistently produces synthetic data of higher quality compared
with baseline methods.

In summary, our main contributions are:

• We introduce a new framework for training privacy-preserving generative models. It offers
easy hyper-parameter tuning and allows for optimizing generative models over any number of
training epochs without extra privacy costs.

• We propose a new information-theoretic divergence and provide a kernel-based estimator. This
estimator enables the training of generative models without relying on adversarial training,
enhancing convergence stability.
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• For the slicing mechanism, we extend the work of [57] and allow for projecting data onto any
k-dimensional space. Using an entirely new proof technique, we provide DP guarantees, which
in the k = 1 setting correct (and strengthen!) the privacy analysis in [57].

• We validate our method through numerical experiments. The results show that our method
produces synthetic data of higher quality compared with baselines.

Additional Related Work

Recent work has proposed alternative approaches for training DP generative models without adver-
sarial networks. For example, [10] considered using the Sinkhorn divergence as the loss function, but
their method adds noise to gradient updates to ensure DP, which leads to the challenges discussed in
the introduction. Another line of work [29, 72, 30, 78] used the maximum mean discrepancy (MMD)
to train DP generative models. They inject noise into the embedding of the private data distribution to
maintain DP. However, minimizing their loss function to zero does not guarantee perfect matching
between the synthetic and real data distributions, due to either not using a characteristic kernel or the
approximation errors stemming from using finite-dimensional feature mappings to approximate the
kernel function. In contrast, Proposition 1 proves that our smoothed-sliced f -divergence equals zero
iff the synthetic and real distributions are identical; Corollary 1 establishes the statistical consistency
of training generative models using our loss function. Additionally, we amplify our privacy bound by
leveraging random projections in Theorem 1.

There is significant research introducing DP mechanisms tailored to generating tabular synthetic data
[e.g., 79, 42, 43, 44, 22, 70, 1, 80, 40, 71, 16]. They select a set of workload queries (e.g., low-order
marginal queries) and generates synthetic data to minimize approximation errors on these queries.
These methods often maintain statistical properties of the original data with high accuracy, particularly
for the selected workload queries; downstream predictive models trained on such synthetic data
often achieve high performance when deployed on real data [66, 73]. However, they only apply to
categorical features1, rely on special generative model architectures, or struggle to scale effectively
to high-dimensional data. More broadly, there are several works analyzing DP synthetic data from
a theoretical perspective or investigating other properties of synthetic data (e.g., missing values)
[52, 68, 23, 9, 7, 6, 58, 46].

A burgeoning line of work has explored slicing and smoothing to improve sample complexity in
estimating divergence and optimal transport measures. These measures often suffer from extreme
curses of dimensionality (e.g., n−1/d for Wasserstein distance [17]). Previous studies have shown
that both slicing [56, 69, 37, 48, 26] and smoothing [28, 25] facilitate convergence at the parametric
rate for both f -divergences and optimal transport distances, while preserving key properties of
the original divergence (e.g., being zero iff the two distributions are identical). These modified
divergences are also used as objective functions for training generative models. In our context, the use
of smoothed-sliced divergence is less motivated by sample complexity (indeed using both smoothing
and slicing would be unnecessary for achieving the parametric rate). Instead, it is motivated by the
slicing privacy mechanism. Also, while we enjoy the sample complexity benefits of slicing, we do
not benefit from the sample complexity improvements of smoothing [27]. This is because achieving
DP requires injecting a finite number (typically just one) of noise realizations per data point. Full
smoothing results are still useful, however, for our consistency results in the asymptotic regime.

While the 1-dimensional sliced Wasserstein distance can be computed via a simple sorting algorithm
[14], there is in general no closed-form sample-based estimator for f -divergence, even in one
dimension. While nearest neighbor [74] and kernel-based [47] estimators do exist, they often suffer
from scalability issues and are not friendly to gradient-based optimization. Hence, it is a common
practice to use dual forms of f -divergence in deriving adversarial-based training procedures for
generative models [53]. In the present work, we avoid this costly adversarial training using our
moment matching estimator.

The supplementary material of this paper includes: (i) omitted proofs of all theoretical results and (ii)
supporting experimental results.

1There are a few exceptions [e.g., 41, 71] but they only generate a pre-determined number of synthetic
samples, rather than providing a generative model, as ours does.
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2 Preliminaries and Problem Setup

In this section, we review the concepts of differential privacy (DP), f -divergence, and a moment
matching method used for estimating f -divergence.

2.1 Differential Privacy

We denote the original dataset as a matrix X ∈ Rn×d, where n denotes the number of records and d
represents the number of real-valued features per record.
Definition 1 (Dataset adjacency). Two datasets X and X′ are considered adjacent if they differ in a
single row, say the i-th row, such that ∥Xi,: −X′

i,:∥2 ≤ 1 where Xi,: and X′
i,: are the i-th row of X

and X′, respectively.

Next, we recall the definition of differential privacy (DP) [18].
Definition 2 ((ϵ, δ) differential privacy). A randomized mechanism M : Rn×d → O satisfies
(ϵ, δ)-differential privacy if for any adjacent datasets X, X′ and all possible outcomes S ⊆ O, we
have:

Pr(M(X) ∈ S) ≤ exp(ϵ) Pr(M(X′) ∈ S) + δ.

DP has many compelling properties. The post-processing property states that if a mechanism M is
(ϵ, δ)-DP, its outcome remains (ϵ, δ)-DP even after applying a (potentially randomized) function; the
basic composition rule states that given a sequence of mechanisms M1, . . .Mk, if Mi is (ϵi, δi)-DP,
then their composition M(D) = (M1(D), . . . ,Mk(D)) will satisfy (

∑k
i=1 ϵi,

∑k
i=1 δi)-DP.

2.2 f-divergence and Moment Matching

We first recall the definition of f -divergence [Chapter 7 in 55].

Definition 3. Let f : (0,∞) → R be a convex function with f(1) = 0 and f(0) ≜ f(0+). Let
PX and QX be two probability distributions on X . If P ≪ Q, then the f -divergence is defined as
Df (P∥Q) ≜ EQ

[
f
(

dP
dQ

)]
where dP

dQ is a Radon-Nikodym derivative. Additionally, we denote the

density ratio by r(x) ≜ dP
dQ (x).

f -divergences have many nice properties. For example, it is always non-negative; and assuming f is
strictly convex at 1, then Df (P∥Q) = 0 if and only P = Q.

There is a burgeoning field of research focusing on f -divergence estimation [see e.g., 28, 75, 61].
Here we revisit a framework based on kernel mean matching, a special instance of moment matching
methods [Chapter 3 in 63]. Given a reproducing kernel K(x,x′), one can solve the following
optimization problem to estimate the density-ratio function:

min
r∈R

∥∥∥∥∫ K(x, ·)dP (x)−
∫

K(x, ·)r(x)dQ(x)

∥∥∥∥2
R
,

where ∥ · ∥R denotes the norm of a reproducing kernel Hilbert space R. One example of reproducing
kernels is the Gaussian kernel K(x,x′) = exp

(
−∥x−x′∥2

2

2σ2
g

)
. Given {xp

i }
np

i=1 drawn from P and

{xq
j}

nq

j=1 drawn from Q, we can optimize an empirical version of the above optimization to obtain an
analytical solution:

r̂q =
nq

np
K−1

q,qKq,p1np
,

where r̂q ∈ Rnq is the (empirically) optimal density ratio values at samples drawn from Q, Kq,q ∈
Rnq×nq and Kq,p ∈ Rnq×np are the kernel Gram matrices:

[r̂q]j = r̂
(
xq
j

)
, [Kq,q]j,j′ = K

(
xq
j ,x

q
j′

)
, [Kq,p]j,i = K

(
xq
j ,x

p
i

)
.

We extend the definition of f to a vector by applying it to each element of the vector. Then we have

D̂f (P∥Q) =
1

nq
1T
nq
f(r̂q) =

1

nq
1T
nq
f

(
nq

np
K−1

q,qKq,p1np

)
. (1)
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3 Main Results

We introduce a new information-theoretic measure—the smoothed-sliced f -divergence. We show
that this divergence can measure the difference between distributions, with only access to noised
k-dimensional slices of the distributions. This finding motivates a new DP mechanism: the k-slicing
privacy mechanism. Finally, using the non-adversarial estimator (1), we apply the smoothed-sliced
f -divergence as a new loss function to train privacy-preserving generative models.

3.1 Smoothed-sliced f-divergence

We start with giving a formal definition of the smoothed-sliced f -divergence.

Definition 4. Denote the Stiefel manifold of d×k matrices with orthonormal columns by Sk(Rd). Let
Θ ∼ Unif(Sk(Rd)) and N ∼ N (0, σ2Ik). The smoothed-sliced f -divergence between distributions
PX and QX on Rd is defined as

SDf,k,σ2(PX∥QX) ≜ Df (PΘT X+N|Θ∥QΘT X+N|Θ|PΘ)

=
1

vol(Sk(Rd))

∫
θθθ∈Sk(Rd)

Df (PθθθT X+N∥QθθθT X+N)dθθθ.

Next, we discuss some basic properties of this new divergence.

Proposition 1. The smoothed-sliced f -divergence is non-negative: SDf,k,σ2(PX∥QX) ≥ 0 for any
k ≥ 1 and σ ≥ 0. If f is strictly convex at 1 and PX, QX have moment generating functions, then
SDf,k,σ2(PX∥QX) = 0 if and only if PX = QX.

Given a set of real data {xi}ni=1 (i.e., rows of X) and synthetic data {xsyn
i }nsyn

i=1, let D̂f denote any
estimator of k-dimensional f -divergence (e.g., (1)). We draw random directions θθθs and additive noise
vs,i and v̄s,i. Then we can estimate the smoothed-sliced f -divergence by

ŜDf,k,σ2(PXsyn∥PX) =
1

m

m∑
s=1

D̂f

(
{xsyn

i θθθs + v̄s,i}
nsyn
i=1∥{xiθθθs + vs,i}ni=1

)
. (2)

As ŜDf,k,σ2 is an empirical average of m estimates of k-dimensional divergences, this estimator will
inherit any statistical convergence bounds that apply to the chosen D̂f .

3.2 Slicing Privacy Mechanism

The loss function in (2) accesses the original data solely through their noisy projections along random
directions. This observation motivates the following k-slicing privacy mechanism.

Definition 5. Let k denote the dimension of the random projections, and m denote the number of
them, yielding m′ = mk. Let X ∈ Rn×d represent the original dataset where we assume ∥Xi,:∥2 ≤ 1

for all i. Let U ∈ Rd×m′
and V ∈ Rn×m′

be random slicing and noise matrices with each element
independently drawn from Ui,j ∼ N (0, d−1) and Vi,j ∼ N (0, σ2), respectively. The slicing privacy
mechanism is defined as

M(X) ≜ (U,XU+V). (3)

Remark 1. Our mechanism outputs the random slicing matrix U, as it will be used to project
the synthetic data onto the same spaces during the training of generative models. In contrast, [57]
did not include U in their privacy mechanism, leading them to give an incorrect derivation of the
privacy guarantee. Similarly, our approach differs from using the Johnson-Lindenstrauss transform to
preserve DP [5, 20], as these methods do not reveal the random matrix.

In Definition 5, we draw random projections from a Gaussian distribution instead of uniformly from
the Stiefel manifold. This choice simplifies the sampling procedure and streamlines our privacy
analysis by making the the mechanism output jointly Gaussian with zero mean, conditioned on the
data. Next, we establish the DP guarantees for our noisy slicing mechanism.
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Theorem 1. Assume γ ≜ σ−2(α2 − α) < d. For all δ ∈ (0, 1) and α > 1, the mechanism
M(X) = (U,XU+V) in Definition 5 satisfies(

m′α

2σ2(d− γ)
+

ln(1/δ)

α− 1
, δ

)
− DP.

where (ϵ, δ)-DP is as defined in Definition 2 with dataset adjacency specified in Definition 1.

Our privacy bound relies on k (the dimension of projection spaces) and m (the number of slices) only
through their product m′ = mk, which reveals a trade-off: with a fixed privacy budget, increasing k
aids generative models in capturing higher-order information of the original data, while increasing m
improves the accuracy of learning lower-order information. This trade-off resembles marginal-based
mechanisms, where adjusting k to enable generative models to learn the k-way marginal queries
[Definition 1 in 40] involves a similar effect. However, we remark that even one-dimensional slices
suffice to fully characterize a distribution since SDf,1,σ2(PX∥PXsyn) = 0 implies PX = PXsyn by
Proposition 1. In contrast, matching all k-way marginal distributions for k < d does not necessarily
ensure PX = PXsyn .

We prove in Appendix Proposition 3 that the slicing privacy mechanism is
(

mα
2σ2 + ln(1/δ)

α−1 , δ
)

-DP if
the projection matrix U is deterministic. Comparing it with Theorem 1, we observe that by randomly
selecting the projection matrix, we can achieve a tighter privacy bound by reducing a factor of k

d−γ

(for the first-term), even if U is disclosed by the privacy mechanism. The rationale behind this lies in
the fact that a deterministic projection matrix allows the model designer/adversary to target specific
individual records through carefully designed projection directions.

Remark 2 (Choosing α). The bound in Theorem 1 can be optimized in terms of α for a desired
fixed δ and this optimization can be done numerically. Alternatively, there is an ad hoc strategy for
‘approximately optimizing’ α. Let us assume γ ≤ d/2, i.e. α2 − α ≤ dσ2/2. Then

ϵ ≤ m′α

σ2d
+

ln(1/δ)

α− 1
.

Minimizing the right hand side expression w.r.t. α > 1 yields an optimal

α∗ = 1 +

√
σ2d ln(1/δ)

m′ .

Substituting it into the (true) expression for ϵ yields

ϵ∗ =
m′

2σ2(d− γ∗)
+

(
1 +

√
d

2(d− γ)

)√
m′ ln(1/δ)

σ2d
≤ m′

σ2d
+ 2

√
m′ ln(1/δ)

σ2d
,

where γ∗ = σ−2(α2 − α).

3.3 Training Generative Models

We outline our approach for training privacy-preserving generative models using the smoothed-sliced
f -divergence (see Algorithm 1 for more details). First, we transform the output of the slicing privacy
mechanism M(X) = (U,XU+V) into O = {(θθθs,oi,s)}s∈[m],i∈[n]. Here θθθs = U:,(s−1)k+1:sk ∈
Rd×k is the random slicing directions and oi,s = (XU + V)i,(s−1)k+1:sk ∈ Rk is the (noisy)
projection of the i-th data point onto the s-th slice.

Let Gω be a generative model with trainable parameters ω ∈ Ω. At each iteration, we sample a
mini-batch from O as {(θθθs,oi,s)}s∈[m],i∈[b], where b is the batch size.

To produce synthetic data, we draw random noise zj for j ∈ [b] and feed them into the generative
model xsyn

j = Gω(zj). Additionally, we draw random noise v̄j,s ∼ N (0, σ2Ik) for j ∈ [b] and
s ∈ [m] that will be added to the projected synthetic data.2 Given these samples, we train the
generative model Gω to generate samples close to the real data, using an estimator for the sliced

2This noise can be resampled every epoch as it does not touch the real data.
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f -divergence to measure the discrepancy between the noisy-sliced real data oi,s and the noisy-sliced
synthetic data xsyn

j θθθs + v̄j,s. The smoothed slice f -divergence (2) yields the following loss function:

L(ω) =
1

m

m∑
s=1

D̂f

(
{xsyn

j θθθs + v̄s,j}bj=1∥{oi,s}bi=1

)
. (4)

The following corollary is a direct application of Proposition 1.
Corollary 1 (Consistency). Consider a dataset X ∈ Rn×d of n i.i.d. samples from a d-dimensional
distribution PX whose moment generating function exists, and the slicing privacy mechanism M(X)
as in Definition 5. Suppose the noise level σ is fixed while m → ∞ and n → ∞.3 Additionally,
suppose that the chosen f -divergence estimator D̂f is consistent and f is strictly convex at 1. Then
limn,m,b→∞ L(ω∗) = 0 for some ω∗ ∈ Ω if and only if Gω∗(Z) ∼ PX .

Inserting our kernel-based estimator (1) yields for kernel K

L(ω) =
1

mb

m∑
s=1

1T
b f
((

(Ks + τIb)
−1Ks,ω1b

)
+

)
, (5)

where we compute the kernel Gram matrices Ks,Ks,ω ∈ Rb×b along each slice:

[Ks]i,i′ = K (oi,s,oi′,s) , [Ks,ω]i,j = K
(
oi,s,x

syn
j θθθs + v̄j,s

)
, for s ∈ [m]. (6)

To ensure the stability of computing matrix inversion, we include a τIb where τ > 0 is a small
constant. Given that the domain of f is [0,∞), we clip the density ratio estimator to make it
non-negative.
Remark 3. Note that to compute the kernel Gram matrices Ks and Ks,ω, we need to apply the
Gaussian kernel, which requires a constant σg. A heuristic of choosing this σg is to make it the
median distance between all samples—note that this will lead to different kernels along different
slices. In practice, we use an ensemble of σg and average their density ratio estimators.

Algorithm 1 Training DP generative modes with the smoothed-sliced f -divergence.
Input: training data X = {xi}ni=1; slicing dimension k; number of slices m; batch size; max number of
iterations T ; learning rate η; privacy budget ϵ, δ.
Apply the noisy slicing mechanismM(X) with (ϵ, δ)-DP, finding a noise variance σ2

(ϵ,δ) and transforming
the output into {(θθθs,oi,s)}s∈[m],i∈[n].
for t = 1, · · · , T do

Sample a mini-batch of data from {(θθθs,oi,s)}s∈[m],i∈[n], choosing a batch subset of the i.
Generate synthetic data Xsyn by feeding random noise into Gω .
Slice and noise the synthetic data as o(syn)

s = θθθsXsyn + σ(ϵ,δ)N (0, I), redrawing the noise each time
(no privacy cost).

Compute the kernel Gram matrices (6) under Gaussian kernels in each slice.
Compute the loss function L(ω) in (5).
Run stochastic-gradient optimization ω ← ω − η∇ωL(ω).

end for
Output: generative model Gω .

4 Numerical Experiments

We validate our approach and compare it with baselines through numerical experiments. Additional
experimental results and details of our setup are reported in Appendix C.

4.1 Synthetic Tabular Data

Baselines. We compare our Algorithm 1 with four DP mechanisms: DP-SGD [76, 59], PATE [33],
MERF [29] and SliceWass [57]. Like our algorithm, these baselines can handle both numerical

3Privacy guarantees will be vacuous in this limit but this can be mitigated by privacy amplification (see
Lemma 1 in appendix). Specifically, we can subsample n data from a larger dataset of size n′ and let n′/n→∞.
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Single Attribute Similarity Pairwise Attribute Similarity Classifier F1 Score

Dataset DP Mechanism KSComp TVComp ContSim CorrSim LogitRegression

Income Algorithm 1 0.40 ±0.05 0.70 ±0.01 0.35 ±0.01 0.96 ±0.04 0.31 ±0.20

SliceWass 0.24 ±0.05 0.61 ±0.03 0.27 ±0.02 0.93 ±0.07 0.13 ±0.14

DP-SGD 0.29 ±0.06 0.38 ±0.02 0.10 ±0.01 0.75 ±0.07 0.00 ±0.00

PATE 0.15 ±0.03 0.40 ±0.05 0.13 ±0.03 0.90 ±0.07 0.16 ±0.18

MERF 0.81 ±0.01 0.51 ±0.04 0.10 ±0.02 0.56 ±0.03 0.28 ±0.001

Coverage Algorithm 1 0.74 ±0.07 0.87 ±0.02 0.63 ±0.02 0.91 ±0.05 0.41 ±0.04

SliceWass 0.72 ±0.06 0.85 ±0.01 0.60 ±0.01 0.91 ±0.05 0.41 ±0.02

DP-SGD 0.44 ±0.06 0.63 ±0.09 0.35 ±0.10 0.73 ±0.15 0.24 ±0.28

PATE 0.35 ±0.05 0.51 ±0.03 0.26 ±0.02 0.85 ±0.09 0.32 ±0.22

MERF 0.36 ±0.18 0.52 ±0.04 0.18 ±0.03 0.69 ±0.15 0.29 ±0.19

Mobility Algorithm 1 0.68 ±0.06 0.85 ±0.01 0.50 ±0.01 0.86 ±0.01 0.69 ±0.03

SliceWass 0.74 ±0.04 0.84 ±0.02 0.50 ±0.02 0.86 ±0.03 0.67 ±0.06

DP-SGD 0.52 ±0.05 0.70 ±0.06 0.34 ±0.06 0.74 ±0.13 0.67 ±0.19

PATE 0.08 ±0.03 0.54 ±0.03 0.23 ±0.02 0.83 ±0.02 0.41 ±0.42

MERF 0.34 ±0.05 0.59 ±0.01 0.21 ±0.01 0.68 ±0.04 0.59 ±0.34

Employment Algorithm 1 0.77 ±0.03 0.83 ±0.01 0.64 ±0.02 - 0.47 ±0.07

SliceWass 0.74 ±0.04 0.83 ±0.01 0.62 ±0.00 - 0.50 ±0.10

DP-SGD 0.45 ±0.04 0.52 ±0.05 0.25 ±0.05 - 0.46 ±0.31

PATE 0.39 ±0.12 0.54 ±0.04 0.30 ±0.04 - 0.38 ±0.28

MERF 0.96 ±0.01 0.67 ±0.03 0.34 ±0.02 - 0.67 ±0.03

TravelTime Algorithm 1 0.45 ±0.03 0.75 ±0.01 0.45 ±0.01 0.87 ±0.05 0.42 ±0.12

SliceWass 0.33 ±0.01 0.62 ±0.02 0.33 ±0.01 0.84 ±0.05 0.42 ±0.14

DP-SGD 0.37 ±0.08 0.54 ±0.03 0.22 ±0.03 0.94 ±0.07 0.37 ±0.33

PATE 0.37 ±0.04 0.40 ±0.06 0.15 ±0.03 0.91 ±0.02 0.34 ±0.20

MERF 0.61 ±0.04 0.37 ±0.02 0.07 ±0.01 0.62 ±0.02 0.14 ±0.28

Table 1: We compare synthetic tabular data generated by our Algorithm 1 with baselines, all under
the same privacy budget ϵ = 5.1. We demonstrate them on the US Census data derived from the
American Community Survey (ACS) with various evaluation metrics. These metrics range from 0
to 1, with higher scores indicating better performance. Since Employment has only one numerical
column and CorrSim requires at least two numerical columns, we skip its values. The highest scores
are highlighted in bold. If two methods have the same average score, only the one with lower standard
deviation is highlighted. We remark that KSComp and CorrSim are less significant since they are
designed for numerical columns. However, the benchmark datasets contain a limited number of
numerical columns, with the majority being categorical (see Table 2).

and categorical data types without requiring data discretization and return a generative model that
can produce any number of synthetic data. The implementations of the first two are adapted from
an open-source Python library [60], and the MERF implementation is from https://github.com/
ParkLabML/DP-MERF. For SliceWass, we combine our slicing privacy mechanism with their main
algorithm, which fixes the flaw in their privacy analysis and improves their privacy guarantees (and
therefore quality results). Additionally, since their public Github repo does not include their synthetic
data code, we implement their algorithm ourselves.

Data. We validate both our method and baselines using the US Census data derived from the
American Community Survey (ACS) Public Use Microdata Sample (PUMS). Using the API of
the Folktables package [15], we access the 2018 California data. Additionally, Folktables package
provides five prediction tasks (Income , Coverage, Mobility, Employment, TravelTime) based
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on a target column and a set of mixed-type features. Details about these data, including the number
of records and columns, are provided in Table 2 in the appendix.

Evaluation metrics. We follow the evaluation principles in [66] for assessing the quality of
synthetic data and leverage the APIs from an open-source library in our implementation [13].

• KSComplement (numerical columns) and TVComplement (categorical columns). They measure
the (average) similarity of one-way marginals (i.e., histograms of individual columns) between real
and synthetic data.

• ContingencySimilarity. It measures the (average) similarity of pairs of categorical columns
between real and synthetic data.

• CorrelationSimilarity. It measures the (average) correlations among numerical column pairs
and computes the similarity between real and synthetic data.

• BinaryLogisticRegression. It measures the downstream classifier’s F-1 score when trained
on synthetic and test on real data.

Note that the benchmark datasets contain a limited number of numerical columns, with the ma-
jority being categorical (see Table 2). Hence, the applicability of CorrelationSimilarity and
KSComplement is constrained as they are tailored for numerical columns.

Main results and observations. We present the experimental results for ϵ = 5.1 in Table 1 and
show results for ϵ = 8.1 in Appendix C. As shown, the two methods using the slicing privacy
mechanism (Algorithm 1 and SliceWass) consistently outperform the other baselines. MERF has
better numbers for three instances of KSComp and one of LogitRegression, but is signficantly
worse in other instances and for the remaining metrics. For both Algorithm 1 and SliceWass, we
used the same hyper-parameter initialization and neural network architecture across all datasets.
We believe that with more extensive hyperparameter tuning, which incurs no extra privacy cost as
previously discussed, their performance could be even further improved.

Algorithm 1 exhibits a more favorable performance compared with SliceWass in most settings.
The rationale behind this observation lies in the fact that SliceWass is limited to 1-dimensional
slices (k = 1), relying on the closed-form expression of Wasserstein distances in 1D. In contrast,
our Algorithm 1 is applicable to higher-dimensional slices. This capability enables the generative
models to capture higher-order statistical information, leading to better performance in the pairwise
ContingencySimilarity statistic and higher robustness in the BinaryLogisticRegression
downstream task.

4.2 Synthetic Image Data
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Figure 1: We compare accuracy for
downstream classification as a func-
tion of privacy budget (ϵ) for synthetic
MNIST data created by MERF with our
Algorithm 1 and SliceWass. Note
that the two slicing-mechanism-based
approaches outperform MERF for higher
privacy budgets.

We conduct an experiment to generate DP synthetic im-
age data using the MNIST dataset [35]. We train separate
generative models for each of the 10 classes in MNIST,
with 10% of the data randomly sampled for each class.
We evaluate the quality of the synthetic images by mea-
suring the downstream accuracy of a classifier trained on
the synthetic data and deployed on the real MNIST test
set. We compare Algorithm 1 and SliceWass (combined
with our slicing privacy mechanism), with MERF, which
is a state-of-the-art MMD-based method for generating
synthetic images [29]. We observe that MERF outperforms
the two slicing-mechanism-based algorithms at lower pri-
vacy budgets but underperforms at higher budgets. We
hypothesize that MERF achieves superior performance in
the low-budget regime since it privatizes only the mean
embedding of the data for each class; its generative model
is designed to recover this mean rather than the full data
distribution. As using only the mean involves very little
privacy budget, they are able to add less noise and outper-
form in the low-budget regime. Our approach, which models the full data distribution, does not
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benefit from these savings. However, as the privacy budget increases, our method better captures the
true data distribution, leading to improved results over MERF.

4.3 Domain Adaptation

Figure 2: Unsupervised domain adapta-
tion between from MNIST to USPS and
vice versa.

Following the experiments in [57], for completeness we
also apply our smoothed-sliced f -divergence in domain
adaptation tasks. We benchmark our approach with
SliceWass [57] using the implementation available on
their Github repo, modified to use our DP bound. This
experiment aims to privately train a classifier using labeled
data from a source domain and unlabelled data from a tar-
get domain. We consider the target and source domains
being MNIST and USPS, as well as the reverse. Results
for varying ϵ are depicted in Figure 2. As shown, our
Algorithm 1 using 100 slices improves on SliceWass.

5 Final Remarks and Limitations

In this paper, we consider the slicing mechanism for training privacy-preserving generative models
and derive strong privacy guarantees for it. This mechanism motivates us to combine it with f -
divergence to yield a smoothed-sliced f -divergence that can be estimated with a kernel-based density
ratio estimator. Our approach circumvents the need for injecting noise into gradient updates and
avoids adversarial training for optimizing generative models. It provides flexibility in selecting
neural architectures and tuning hyper-parameters without incurring additional privacy costs. Through
experiments on synthetic data generation, we validate our approach and compare it with existing
baselines. Our findings suggest that the slicing privacy mechanism is a powerful tool for training
generative models to create private synthetic data, and the smoothed-sliced f -divergence provides
a promising avenue for advancing the field of privacy-preserving data synthesis in sensitive, high-
dimensional datasets. Additionally, we hope our effort can be of particular interest to the information
theory community and open up a new application frontier for classical information-theoretic tools.

There are several promising avenues worth exploring. The f -divergence has many nice properties,
including (strong) data processing inequalities, inequalities among different f -divergences, and
variational representation. It would be interesting to investigate whether similar properties extend to
the smoothed-sliced f -divergence SDf,k,σ2 . Additionally, deriving sample-complexity bounds for
estimating SDf,k,σ2 from finite samples would offer valuable insights. Finally, the use of synthetic
data presents both opportunities and challenges. On the one hand, synthetic data is well-suited for
various tasks like early model development, educational demonstrations, simulation, and testing. On
the other, synthetic data can never fully replicate all aspects of the original data, and adding DP
guarantees introduces an additional layer of complexity requiring a careful balance between privacy
and utility. Therefore, any machine learning models trained on synthetic data or any insights drawn
from synthetic data should undergo thorough evaluation before deployment in real-world scenarios.
If biases are detected, it is crucial to diagnose their source—whether stemming from the synthetic
data generation algorithm, the noise added to the real data, or other factors—to ensure that the models
perform robustly and reliably in practice.
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A Privacy Analysis

Before diving into the proof of Theorem 1, we will first revisit the definition of Rényi differential
privacy (RDP) [45, 19, 8] and its connection with differential privacy (DP). Additionally, we will
recall a useful property of DP known as privacy amplification by subsampling.

Definition 6. A randomized mechanism M : Rn×d → O satisfies (α, ϵ)-RDP if for any adjacent
datasets X,X′ ∈ Rn×d, we have

sup
X∼X′

Dα(M(X)||M(X′)) ≤ ϵ,

where Dα is the Rényi-α divergence.

Proposition 2 (Prop. 3 in [45]). If M is an (α, ϵ)-RDP mechanism, it also satisfies (ϵ+ ln(1/δ)
α−1 , δ)-DP

for all δ ∈ (0, 1).

We remind readers that two datasets X and X′ are considered adjacent if they differ in a single row,
say the i-th row, such that ∥Xi,: −X′

i,:∥2 ≤ 1 where Xi,: and X′
i,: are the i-th row of X and X′,

respectively. This condition applies, for example, to unbounded DP (add/remove one record) when
the L2 norm of each record is upper bounded by 1.

We revisit privacy amplification by subsampling, a useful technique for handling large-scale datasets
that can save computational resources and memory. It proposes that the privacy guarantees of a DP
mechanism can be improved by randomly subsampling the private dataset before applying the DP
mechanism [34, 36, 2].

Lemma 1. Given a dataset X = [xT
1 , · · · ,xT

n ]
T , PoissonSampleτ independently draws Bernoulli

random variables σi ∼ Bern(τ) for i ∈ [n] and outputs a subset [xT
i ]

T
σi=1,i∈[n]. If a mechanism

M is (ϵ, δ)-DP, then M◦ PoissonSampleτ satisfies (ϵ′, δ′)-DP where ϵ′ = log(1 + τ(eϵ − 1)) and
δ′ = τδ.

We introduce some notations and a result from [24] that will be used in proving the following lemma.
For a matrix A ∈ Rm×n, its determinant is denoted by |A|. The vectorization of A is defined as

vec(A) ≜ [a1,1, · · · , am,1, · · · , a1,n, · · · , am,n]
T .

For two matrices A ∈ Rm×n and B ∈ Rp×q , their Kronecker product A⊗B is the pm× qn block
matrix:

A⊗B ≜

a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

 .

We recall a result from [24, Table 2]:

Dα(N (µµµ,ΣΣΣ)∥N (µµµ′,ΣΣΣ′))

=
α

2
(µµµ−µµµ′)T ((1− α)ΣΣΣ + αΣΣΣ′)−1(µµµ−µµµ′)− 1

2(α− 1)
ln

|(1− α)ΣΣΣ + αΣΣΣ′|
|ΣΣΣ|1−α|ΣΣΣ′|α

, (7)

whenever αΣΣΣ−1 + (1− α)ΣΣΣ′−1
> 0.

Next, we establish the RDP guarantees for our mechanism.

Lemma 2. Assume α > 1 and γ ≜ σ−2(α2 − α) < d. Let U ∈ Rd×m′
and V ∈ Rn×m′

be two random matrices whose elements are drawn independently from N (0, d−1) and N (0, σ2),
respectively. Then the mechanism M(X) = (U,XU+V) satisfies (α, ϵ)-RDP where

ϵ =
m′α

2σ2(d− γ)
.
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Proof of Lemma 2. Since X is not random, the mechanism M(X) maps X to a (dm′+nm′)-variate
Gaussian distribution with mean zero and covariance

Cov

([
vec(UT )

vec((XU+V)T )

])
= d−1

[
Idm′ XT ⊗ Im′

X⊗ Im′ (XXT ⊗ Im′) + dσ2Inm′

]
= d−1

[
Id XT

X XXT + dσ2In

]
⊗ Im′

= d−1B⊗ Im′ , (8)

where we define B ≜

[
Id XT

X XXT + dσ2In

]
. Combining (7) with (8) yields

Dα(M(X)∥M(X′)) = − m′

2(α− 1)
ln

|(1− α)B+ αB′|
|B|1−α|B′|α

=
m′

2(α− 1)

[(
(1− α) ln |B|+ α ln |B′|

)
− ln |(1− α)B+ αB′|

]
.

Next, we compute the determinants in the above Rényi divergence. Using the formula for determinants
of block matrices, we know

|B| = |B′| = |dσ2In|.

For the linear combination, we have

|(1− α)B+ αB′|

=

∣∣∣∣[ Id (1− α)XT + αX′T

(1− α)X+ αX′ (1− α)XXT + αX′X′T + dσ2In

]∣∣∣∣
=
∣∣∣dσ2In +

[
(1− α)XXT + αX′X′T − ((1− α)X+ αX′) ((1− α)X+ αX′)

T
]∣∣∣ .

We denote

∆∆∆ ≜ (1− α)XXT + αX′X′T − ((1− α)X+ αX′) ((1− α)X+ αX′)
T

= −α(XXT −X′X′T )− α2(X−X′)(X−X′)T + αX(X−X′)T + α(X−X′)XT

= −α(−(X−X′)(X−X′)T +X(X−X′)T + (X−X′)XT )

− α2(X−X′)(X−X′)T + αX(X−X′)T + α(X−X′)XT

= (α− α2)(X−X′)(X−X′)T .

Since X and X′ only differ in the i-th row, only one entry of this matrix can be nonzero, specifically,

α− α2 ≤ ∆ii ≤ 0.

Then

Dα(M(X)||M(X′)) =
m′

2(α− 1)

[(
(1− α) ln |B|+ α ln |B′|

)
− ln |(1− α)B+ αB′|

]
=

m′

2(α− 1)

[
ln |dσ2In| − ln |dσ2In +∆∆∆|

]
=

m′

2(α− 1)

[
ln(dσ2)− ln(dσ2 +∆ii)

]
.
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Recall the assumption that |∆ii| ≤ α2 − α ≤ γσ2 for γ ∈ (0, d). Then using the fact that log(a) is
concave in a and has derivative 1/a for a > 0,

Dα(M(X)||M(X′)) ≤ − m′

2(α− 1)

1

dσ2 +∆ii
∆ii

≤ m′

2(α− 1)

1

dσ2 + (α− α2)
(α2 − α)

≤ m′

2(α− 1)

1

(d− γ)σ2
(α2 − α)

≤ m′

2(d− γ)σ2(α− 1)
(α2 − α)

≤ m′α

2σ2(d− γ)
.

Proof of Theorem 1. Theorem 1 follows directly from combining Lemma 2 with Proposition 2.

Next, we establish a privacy bound assuming the projection matrix U is deterministic. Comparing
this with Theorem 1, we observe that by randomly selecting the projection matrix, we can achieve a
tighter privacy bound, even if it is disclosed by the privacy mechanism.

Proposition 3. Let X ∈ Rn×d represents the original dataset. Let V ∈ Rn×m′
be a random

noise matrix with each element independently drawn from Vi,j ∼ N (0, σ2). Let U ∈ Rd×m′
be a

deterministic matrix such that for any j ∈ [m]

U:,(j−1)k+1, · · · ,U:,jk are orthonormal

The privacy mechanism Mdet(X) ≜ XU+V satisfies(
mα

2σ2
+

ln(1/δ)

α− 1
, δ

)
− DP.

Proof of Proposition 3. The privacy mechanism Mdet maps X to a nm′-variate Gaussian distribution
with mean and covariance being:

mean(XU+V) = vec(XU), Cov(XU+V) = σ2Inm′ .

Using (7) yields

Dα(M(X)∥M(X′)) =
α

2
vec(XU−X′U)T (σ2Inm′)−1vec(XU−X′U)

=
α

2σ2
vec((X−X′)U)Tvec((X−X′)U)

=
α

2σ2
∥(Xi,: −X′

i,:)U∥22.

Without loss of generality, we assume

Xi,: −X′
i,: = [x, 0, · · · , 0] with |x| ≤ 1.

Additionally, recall the assumption that for any j ∈ [m], U:,(j−1)k+1, · · · ,U:,jk are orthonormal.
Hence, U2

1,(j−1)k+1 + · · ·+ U2
1,jk+1 ≤ 1, leading to

Dα(M(X)∥M(X′)) ≤ α

2σ2

m′∑
j=1

U2
1,j ≤

αm

2σ2
.

As a result, our privacy mechanism is (α, αm
2σ2 )-RDP. Combining it with Proposition 2 yields the

desired DP guarantee.
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B Other Omitted Proofs

Proof of Proposition 1. The property SDf,k,σ2(PX∥QX) ≥ 0 follows by the non-negativity of the
f -divergence in the integrand. If PX = QX , then clearly

SDf,k,σ2(PX∥QX) =
1

vol(Sk(Rd))

∫
θθθ∈Sk(Rd)

Df (PθθθT X+N∥QθθθT X+N)dθθθ = 0

since the f -divergences Df (PθθθT X+N∥QθθθT X+N) are all zero by definition.

Conversely, by the nonnegativity of the f -divergence, SDf,k,σ2(PX∥QX) = 0 implies

Df (PθθθT X+N∥QθθθT X+N) = 0

for almost every θθθ ∈ Sk(Rd). Additionally, since f is strictly convex at 1, we have

PθθθT X+N = QθθθT X+N.

As a result, by the invertibility of Gaussian convolution,

PθθθT X = QθθθT X

for almost every θθθ ∈ Sk(Rd) since f -divergence nullifies iff the arguments are equal. Since the
distributions are equal, the moment generating functions of these projections are equal, i.e. for all
t ∈ Rk

EZ∼PθθθT X
[et

TZ ] = EZ∼QθθθT X
[et

TZ ]

i.e.
EX∼PX [e

tTθθθT X] = EX∼QX [e
tTθθθT X].

Since θθθt is dense in Rd when θθθ ∈ Sk(Rd) and t ∈ Rk, we have that for any s ∈ Rd,

EX∼PX [e
sT X] = EX∼QX [e

sT X].

But these are just the moment generating functions of PX and QX. Since the moment generating
functions exist and are equal for all s, the densities PX, QX must be equal.

Proof of Corollary 1. By the assumption that D̂f is a consistent estimator of the f -divergence,
b → ∞ with σ constant implies that for any fixed ω,

lim
n,b→∞

L(ω) =
1

m

m∑
s=1

Df

(
PθθθT

s Gω(Z)+N∥PθθθT
s X+N

)
, (9)

where N ∼ N (0, σ2Ik).

In the first case, we assume Gω∗(Z) ∼ PX . Substituting ω = ω∗ into (9) yields

lim
n,b→∞

L(ω∗) =
1

m

m∑
s=1

Df

(
PθθθT

s X+N∥PθθθT
s X+N

)
= 0,

where equality with zero follows because the f -divergence nullifies if its arguments are the same
distribution.

For the second case, we assume that for some ω∗ ∈ Ω

lim
m,n,b→∞

L(ω∗) = lim
m→∞

1

m

m∑
s=1

Df

(
PθθθT

s Gω∗ (Z)+N∥PθθθT
s X+N

)
= 0.

Since the Df

(
PθθθT

s Gω∗ (Z)+N∥PθθθT
s X+N

)
terms are all ≥ 0, the fact that this limit exists implies that

lim
m,n,b→∞

L(ω∗) =
1

vol(Sk(Rd))

∫
θθθ∈Sk(Rd)

Df (PθθθTGω∗ (Z)+N∥PθθθTGω∗ (Z)+N)dθθθ

= SDf,k,σ2(PGω∗ (Z)∥PX).

By Proposition 1, this can equal zero only if PGω∗ (Z) = PX.
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Dataset #Records #Columns #Categorical Cols #Numerical Cols

Income 195,665 10 8 2

Coverage 138,554 19 17 2

Mobility 80,329 21 19 2

Employment 378,817 16 15 1

TravelTime 172,508 16 14 2

Table 2: Dataset details. In addition to the described columns, each dataset has a binary outcome
column, which is used by the evaluation metric LogitRegression.

C Details on the Experimental Results

Datasets We demonstrate our method and baselines using the US Census data derived from the
American Community Survey (ACS) Public Use Microdata Sample (PUMS). Using the API of
the Folktables package [15], we access the 2018 California data. Additionally, Folktables package
provides five prediction tasks (Income , Coverage, Mobility, Employment, TravelTime) based
on a target column and a set of mixed-type features. We provide more details about these datasets in
Table 2.

Data pre-processing. We pre-process each dataset using the open-source Python library [60].
It normalizes numerical columns and one-hot encodes categorical columns, all within a privacy-
preserving way using an ϵ = 0.5. Note that the pre-processing budget is not included in the stated ϵ
in our results. To satisfy the bounded norm assumption in our privacy analysis, we normalize the
resulting dataset so that the largest row 2-norm is upper bounded by 1. This can be achieved by e.g.,
normalizing each row by 1/

√
d, where d is the number of columns. We subsample each dataset at a

rate of 0.25 using the Poisson mechanism, which amplifies the DP guarantees according to Lemma 1.
For all our experiments, we report the amplified ϵ.

More details. For our method and SliceWass, all experiments used batch size of 128 and learning
rate 2 · 10−5, and ran for 200 epochs. For our method and baselines, each model was trained using a
V100 GPU, with runtimes typically less than 2 hours for our method (200 epochs).

Additional results. We repeat our experiments with a different privacy budget ϵ = 8.1 and report
the results in Table 3.
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Single Attribute Similarity Pairwise Attribute Similarity Classifier F1 Score

Dataset DP Mechanism KSComp TVComp ContSim CorrSim LogitRegression

Income Algorithm 1 0.40 ±0.03 0.73 ±0.01 0.37 ±0.01 0.94 ±0.01 0.35 ±0.17

SliceWass 0.25 ±0.01 0.61 ±0.01 0.27 ±0.00 0.98 ±0.01 0.17 ±0.03

DP-SGD 0.30 ±0.10 0.37 ±0.02 0.09 ±0.02 0.91 ±0.06 0.15 ±0.30

PATE 0.19 ±0.09 0.40 ±0.05 0.12 ±0.03 0.95 ±0.02 0.38 ±0.21

MERF 0.82 ±0.01 0.47 ±0.03 0.08 ±0.01 0.60 ±0.14 0.30 ±0.12

Coverage Algorithm 1 0.72 ±0.02 0.87 ±0.01 0.63 ±0.01 0.88 ±0.06 0.41 ±0.07

SliceWass 0.71 ±0.04 0.86 ±0.01 0.62 ±0.01 0.87 ±0.03 0.45 ±0.10

DP-SGD 0.46 ±0.02 0.71 ±0.03 0.42 ±0.05 0.52 ±0.11 0.27 ±0.19

PATE 0.32 ±0.03 0.51 ±0.05 0.25 ±0.05 0.83 ±0.03 0.50 ±0.02

MERF 0.44 ±0.15 0.52 ±0.01 0.18 ±0.01 0.61 ±0.003 0.48 ±0.10

Mobility Algorithm 1 0.71 ±0.02 0.85 ±0.01 0.50 ±0.01 0.86 ±0.01 0.70 ±0.01

SliceWass 0.76 ±0.04 0.85 ±0.02 0.50 ±0.02 0.86 ±0.04 0.65 ±0.05

DP-SGD 0.52 ±0.06 0.72 ±0.06 0.35 ±0.06 0.72 ±0.15 0.62 ±0.20

PATE 0.08 ±0.04 0.53 ±0.03 0.22 ±0.02 0.83 ±0.01 0.54 ±0.40

MERF 0.33 ±0.09 0.58 ±0.01 0.20 ±0.01 0.68 ±0.03 0.19 ±0.08

Employment Algorithm 1 0.67 ±0.00 0.83 ±0.00 0.63 ±0.00 - 0.52 ±0.00

SliceWass 0.75 ±0.00 0.81 ±0.00 0.60 ±0.00 - 0.49 ±0.00

DP-SGD 0.52 ±0.07 0.61 ±0.05 0.33 ±0.05 - 0.29 ±0.34

PATE 0.47 ±0.08 0.49 ±0.03 0.26 ±0.02 - 0.51 ±0.19

MERF 0.95 ±0.02 0.65 ±0.04 0.32 ±0.03 - 0.65 ±0.05

TravelTime Algorithm 1 0.49 ±0.01 0.75 ±0.02 0.45 ±0.02 0.78 ±0.03 0.39 ±0.15

SliceWass 0.30 ±0.02 0.62 ±0.02 0.33 ±0.01 0.93 ±0.01 0.46 ±0.17

DP-SGD 0.41 ±0.06 0.54 ±0.01 0.22 ±0.01 0.82 ±0.12 0.11 ±0.21

PATE 0.42 ±0.10 0.39 ±0.03 0.14 ±0.02 0.88 ±0.04 0.51 ±0.16

MERF 0.56 ±0.08 0.37 ±0.03 0.08 ±0.01 0.62 ±0.01 0.11 ±0.18

Table 3: We repeat the experiment in Table 1 with a different privacy budget ϵ = 8.1.
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