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Abstract

Missing values in real-world data pose a significant and unique challenge to al-
gorithmic fairness. Different demographic groups may be unequally affected by
missing data, and the standard procedure for handling missing values where first
data is imputed, then the imputed data is used for classification—a procedure
referred to as “impute-then-classify”—can exacerbate discrimination. In this paper,
we analyze how missing values affect algorithmic fairness. We first prove that
training a classifier from imputed data can worsen the achievable values of group
fairness and average accuracy. This is because imputing data results in the loss
of the missing pattern of the data, which often conveys information about the
predictive label. We present scalable and adaptive algorithms for fair classifica-
tion with missing values. These algorithms can be combined with any preexisting
fairness-intervention algorithm to handle missing data while preserving information
encoded within the missing patterns. Numerical experiments with state-of-the-art
fairness interventions demonstrate that our adaptive algorithms consistently achieve
higher fairness and accuracy than impute-then-classify across different datasets.

1 Introduction

Missing values exist in many datasets across a wide range of real-world contexts. Sources of missing
values include underreporting in medical information [18], structural missingness from data collection
setups [43], and human error. Missing data poses a challenge to algorithmic fairness because the
mechanisms behind missing values in a dataset can depend on demographic attributes such as race,
sex, and socioeconomic class. For example, in housing data, non-white housing applicants or sellers
may be less likely to report their race due to concerns of discrimination [51]. Real-world data
collection and aggregation processes can also lead to disparate missingness between population
groups. If missing data is not handled carefully, there is a high risk of discrimination between
demographic groups with different rates or patterns of missing data. For example, low-income
patients can have more missing values in medical data involving the results of costly medical tests
[37], making them less likely to qualify for early interventions or get treatment for insufficiently
severe conditions [17].

The issue of missing values has not been sufficiently addressed in current fairness literature. Most
fairness-intervention algorithms that have been proposed are designed for complete data and cannot
be directly applied to data with missing values [e.g., 1, 2, 7, 10, 25, 32, 60, 61]. A common approach
to handle missing values is to first perform imputation, filling in missing entries with appropriate
values, and then apply an off-the-shelf fairness-intervention algorithm to the imputed data (impute-
then-classify). However, this standard procedure has several limitations. In many contexts and
data formats, imputation is not an appropriate method for handling missing values. In healthcare
data, some missing data is categorized as “intended missing data,” which, for example, the National
Cancer Institute does not recommend imputing [43]. For instance, if a respondent answers NO to
the question “Were you seen for an illness or injury?”, they should skip the question “How often
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did you get care for an illness or injury as soon as you wanted?”. Imputing the second question
does not make sense knowing the format of the data. The missingness pattern of the data can also
convey important information about the predictive label. For instance, in surveys with questions
about alcohol consumption history, missing responses are often correlated with alcoholism due to
pervasive social stigma surrounding alcoholism [39]. A model trained on imputed data will suffer
from reduced performance, especially for groups with higher missing data rates.

In this work, we investigate how missing values in data affect algorithmic fairness. We focus on the
setting where input features of predictive models may have missing values. Although a growing body
of research [27, 62] is dedicated to addressing the issue of missing group (sensitive) attributes, the
problem of missing input features is equally crucial and widespread yet less studied. Our objective in
this paper is to bridge this gap and offer a comprehensive study encompassing theory and algorithms
for training fair classifiers in the presence of missing input features, particularly when missingness
patterns vary per population group (as observed in practice).

First, we show that the performance of a fair classifier trained with impute-then-classify can be
significantly lower than one trained directly from data with missing values. Impute-then-classify may
fail because imputation loses information from the missing pattern of the data that can be useful for
prediction. Our result is information-theoretic: a data scientist cannot improve this fundamental limit
by altering the hypothesis class, using a different imputation method, or increasing the amount of
training data.

Next, we introduce methods for adapting fairness-intervention algorithms to missing data. In Section 4,
we present three adaptive algorithms for training fair linear classifiers on data with missing values,
and in Section 5, we introduce an algorithm that adapts general fairness interventions to handle
missing values. We treat the linear case separately because the interpretability of linear classifiers
facilitates their widespread use in practice [11, 47, 54, 56]. Our algorithms work by modifying the
dataset to preserve the information encoded in the missing patterns, then applying an off-the-shelf
fairness-intervention algorithm to the new dataset. This avoids the information-theoretic limitation of
impute-then-classify described in our theoretical result above. Most importantly, our algorithms are
flexible because they can be combined with any preexisting fairness intervention to handle missing
values fairly, accurately, and efficiently. Other advantages include scalability to high-dimensional
data, generalizability to new data, and the ability to handle new missing patterns that occur only at
testing time.

We benchmark our adaptive algorithms through comprehensive numerical experiments. We couple the
adaptive algorithms with state-of-the-art fair classification algorithms and compare the performance
of these methods against impute-then-classify. Our results show that the adaptive algorithms achieve
favorable performance compared to impute-then-classify on several datasets. The gap in performance
is more pronounced when missing data patterns encode more information, such as when data
missingness is correlated with other features, i.e., not missing uniformly at random. Although the
relative performance of the adaptive methods depends on the data distribution, even a simple method
such as adding missing indicators as input features consistently achieves better fairness-accuracy
curves than impute-then-classify. When applying fairness interventions on missing data, we find that
utilizing information from missing patterns is crucial to mitigate the fairness and accuracy reduction
incurred by imputation. Our results suggest that practitioners using fairness interventions should
preserve information about missing values to achieve the best possible group fairness and accuracy.

1.1 Related work

Missing values in supervised learning. A line of recent works has investigated the limitations
of performing imputation prior to classification [4, 26, 36]. In a remarkable paper, Le Morvan et al.
[36] found that even if an imputation method is Bayes optimal, downstream learning tasks generally
require learning a discontinuous function, which weakens error guarantees. This motivated a neural
network algorithm that jointly optimizes imputation and regression using an architecture for learning
optimal predictors with missing values introduced in [35, 42]. Among related work in supervised
learning with missing values, the closest to ours is [4] and [31]. Bertsimas et al. [4] devised several
algorithms for a general linear regression task with missing values where the missingness pattern
of the data is utilized to make predictions. In particular, the static regression with affine intercept
algorithm involves adding missing indicators as feature variables and has been found to improve
performance for standard prediction tasks [45, 50, 52, 57]. Our work generalizes their algorithms
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to fair classification tasks. We also extend the family of ensemble approaches in Khan et al. [31] to
fair classification using a general, non-linear base classifier. Our approach is similar to [49] in using
bootstrapping to satisfy strengthened fairness conditions; a key difference is that we explicitly use
(known) sensitive attributes and labels when drawing subsamples to ensure sample diversity.

Missing values in fair machine learning. Discrimination risks related to missing values were
studied in [6, 14, 23, 48, 53, 58]. Caton et al. [6], Fernando et al. [14], Jeong et al. [23], Mansoor
et al. [40], Schelter et al. [48], Zhang and Long [63] provided empirical assessments on how different
imputation algorithms impact the fairness risks in downstream prediction tasks. These studies have
highlighted that the choice of imputation method impacts the fairness of the resulting model and that
the relative performance of different imputation methods can vary depending on the base model. To
mitigate discrimination stemming from missing values, researchers have proposed different methods
for fair learning with missing values for tabular data [23, 58] and for graph data [53]. Among these
works, the closest one to ours is Jeong et al. [23] which proposed a fair decision tree model that
uses the MIA approach to obtain fair predictions without the need for imputation. However, their
algorithm hinges on solving a mixed integer program, which can be computationally expensive.

Another related line of work studies how one can quantify the fairness of a ML model when the
required demographic information (i.e., sensitive group attributes) is missing. Methods to estimate
fairness of models in the absence of sensitive group attributes have been developed using only
observed features in the data [27] or complete case data [62]. Multiple works have also studied
fairness when predictive labels themselves are missing. Wu and He [59] propose a model-agnostic
approach for fair positive and unlabeled learning. Ji et al. [24] propose a Bayesian inference approach
to evaluate fairness when the majority of data are unlabeled. Lakkaraju et al. [33] propose an
evaluation metric in settings where human decision-makers selectively label data and make decisions
using unobserved features. In contrast, we focus on algorithm design for the case of missing
non-group attribute input features.

2 Preliminaries

Throughout, random variables are denoted by capital letters (e.g., X), and sets are denoted by
calligraphic letters (e.g., X ). We consider classification tasks where the goal is to train a classifier h
that uses an input feature vector x = (x1, · · · , xd) to predict a label y. We restrict our domain to
binary classification tasks where y ∈ {0, 1}, but our analysis can be directly extended to multi-class
tasks. In practice, x may contain missing values, so we let x ∈

∏d
i=1 (Xi ∪ {NA}).

We adopt the taxonomy in [38] and consider three main mechanisms of missing data: missing
completely at random (MCAR), where the missingness is independent of both the observed and
unobserved values, missing at random (MAR), where the missingness depends on the observed values
only, and missing not at random (MNAR), where the missingness depends on the unobserved values.
We introduce a missingness indicator vector m ∈ M = {0, 1}d that represents the missingness
pattern of x: the missingness indicator mj = 1 if and only if the jth feature of x is missing.

We evaluate differences in classifier performance with respect to a group (sensitive) attribute S ∈ S .
Fairness-intervention algorithms often aim to achieve an optimal fairness-accuracy trade-off by
solving a constrained optimization problem

max
h

E [I(h(X) = Y )] s.t. Disc(h) ≤ ϵ (1)

for some tolerance threshold ϵ ≥ 0. Here I is the indicator function, which equals 1 when the
classifier h produces the correct prediction h(X) = Y , and otherwise, it equals 0. Disc(h) represents
the violation of a (group) fairness constraint. For example, we can define Disc(h) for equalized odds
as

Disc(h) = max
y,ŷ,s,s′

|Pr(h(X) = ŷ|Y = y, S = s)− Pr(h(X) = ŷ|Y = y, S = s′)| .

Equalized odds addresses discrimination by constraining the disparities in false positive and false
negative rates between different sensitive groups. Analogous expressions exist for other group fairness
constraints such as equality of opportunity and statistical parity [13, 20]. In the case where multiple,
overlapping sensitive attributes exist in the data, our framework can be extended to the multiaccuracy
and multicalibration fairness measures introduced in Kim et al. [32] and Hébert-Johnson et al. [21].
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3 Characterization of Fairness Risk on Imputed Data

Methods for learning a fair classifier can fail when data contains missing values. For example, many
fairness interventions use base classifiers such as linear classifiers and random forest that do not
support missing values [e.g., 2, 61]. Others use gradient-based optimization methods that require a
continuous input space [e.g., 1]. Impute-then-classify is the most common way of circumventing
this issue. However, a key limitation of impute-then-classify is that imputing missing values loses
information that is encoded in the missingness of the data. If the data contains missing values that
are not MCAR, the fact that a feature is missing can be informative. A model trained on imputed
data loses the ability to harness missingness to inform its predictions of the label. We introduce a
theoretical result that rigorously captures this intuition.

We represent an imputation mechanism formally as a mapping fimp :
∏d

i=1 (Xi ∪ {NA}) →
∏d

i=1 Xi

and denote the imputed features by x̂ = fimp(x). We define the underlying data distribution by
PS,X,Y and the distribution of imputed data by PS,X̂,Y . We use the mutual information to measure
the dependence between the missing patterns M and the label Y :

I(M ;Y ) ≜
∑

m∈M

∑
y∈{0,1}

PM,Y (m, y) log
PM,Y (m, y)

PM (m)PY (y)
.

Recall the constrained optimization problem in (1) for training a fair classifier. When the optimization
is over all binary mappings h, the optimal solution only depends on the data distribution PS,X,Y

and the fairness threshold ϵ. In this case, we denote the optimal solution of (1) by Fϵ(PS,X,Y ). The
next theorem states that even in the simple case where a single feature has missing values, impute-
then-classify can significantly reduce a classifier’s achievable performance under a group fairness
constraint when the missingness pattern of the data is informative with respect to the predictive label.
Theorem 1. Suppose that X is composed by a single discrete feature (i.e., d = 1) and Disc(h)
is the equalized odds constraint. Let g : [0, 1] → R be the binary entropy function: g(a) =
−a log(a)− (1− a) log(1− a). For any ϵ and a < 1/3, there exists a data distribution PS,X,Y such
that I(M ;Y ) = g(a) and

sup
fimp

Fϵ(PS,X̂,Y ) ≤ Fϵ(PS,X,Y )− a.

This information-theoretic result shows that applying a fairness-intervention algorithm to imputed data
can suffer from a significant accuracy reduction which grows with the mutual information between
the missing patterns and the label. Note that the supremum is taken over all imputation mechanisms;
the inequality holds regardless of the type of classifier, imputation method used, or amount of training
data available. In other words, the negative impact to performance due to information loss from
imputation is unavoidable if using impute-then-classify.

4 Adapting Linear Fair Classifiers to Missing Values

In the last section, we showed how a classifier trained from impute-then-classify may exhibit
suboptimal performance under a (group) fairness constraint. We now address this issue by presenting
adaptive algorithms that can be combined with fairness interventions to make fair and accurate
predictions on data with missing values. We extend prior work in [4] to a fair classification setting.

We focus first on adapting fairness interventions to missing values in linear classifiers, and present
results for non-linear methods in the next section. We treat the linear case separately since, despite
their simplicity, linear classifiers are widely used in practice and in high-stakes applications (e.g.,
medicine, finance) due to their interpretability [11, 47, 54, 56]. The adaptive algorithms we propose
allow a model to handle any missing pattern that appears at training and/or test (deployment) time.

We propose three methods tailored to linear classification: (i) adding missing values as additional
features, (ii) affinely adaptive classification, and (iii) missing pattern clustering. Our methods encode
missing value patterns via adding new features in the case of (i) and (ii) and partitioning the dataset in
the case of (iii), allowing a fairness intervention to then be applied on the encoded data. For example,
if the fairness intervention is a post-processing scheme, a linear classifier is fit on the encoded data
and then modified by the intervention. For in-processing schemes [1, 7, 30], the fair linear classifier
is simply trained on the encoded data. The three methods are illustrated in Figure 4a (Appendix C).
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4.1 Adding missing indicator variables

Our first adaptive algorithm is to pass m as part of the input feature vector and impute missing
values by zero. Letting x̂ denote the imputed original features, our new feature vectors are now of
the form (x̂,m) ∈ (

∏d
i=1 Xi)× {0, 1}d, and we can then train an off-the-shelf fairness-intervention

algorithm on the new data. This approach is highly scalable as the number of features in the new data
is 2d. We can interpret learning a linear classifier w = (w1, . . . , wd, b1, . . . , bd) on the transformed
dataset (where bj is the coefficient of mj) as equivalent to jointly learning a linear classifier w′ =
(w1, . . . , wd) on the original data and an imputation method that replaces missing values in feature
j with bj

wj
[4]. Alternatively, noting that w⊤(x̂,m) =

∑d
j=1 wjxj(1−mj) +

∑d
j=1 bjmj , adding

missing indicators effectively allows the bias term to be adjusted by bj when feature j is missing.

Intuitively, using missing indicators captures the information encoded in the missingness patterns of
the data. We provide an information-theoretic interpretation of this intuition in Appendix B.

4.2 Affinely adaptive classification

As mentioned above, adding missing indicator variables allows the bias term of a linear classifier to
be adjusted by a constant when a feature is missing. We can treat the coefficients of the classifier in a
similar way. Affinely adaptive regression includes additional input features of the form mk(1−mj)xj

for j, k ∈ [d] with j ̸= k, then applying zero imputation and an off-the-shelf fairness intervention.
This can be interpreted as training a linear classifier with coefficients w0 +Wm, where w0 is an
initial set of coefficients and Wjk denotes the adjustment to wj when xk is missing:

(w0 +Wm)⊤x̂ =

d∑
j=1

w0j(1−mj)xj +

d∑
j=1

d∑
k=1

Wjkmk(1−mj)xj .

Affinely adaptive classification generalizes simply adding missing indicators by including a bias term
as an additional input feature. However, a significant drawback is that affinely adaptive classification
requires O(nmissd) features where nmiss is the number of original features that contain missing values,
though this number may be small in practice.

4.3 Missing pattern clustering

The previous two algorithms transform the original dataset by adding additional input features
encoding data missingness. We now introduce a two-step missing pattern clustering algorithm. First,
the missing patterns in the data are split into clusters. Then, an off-the-shelf fairness intervention
algorithm is applied on each cluster separately. Rather than encoding data missingness with additional
input features, this algorithm avoids the limitation of impute-then-classify by using missing patterns
to partition the dataset. We also impose group fairness constraints in the clustering process to ensure
sufficient sample size and diversity in each cluster. This allows the fair classifiers on each cluster to
generalize to fresh data.

During clustering, we split all possible missing patterns M into Q clusters {Mq}Qq=1 using a recursive
partitioning method. Let P denote the current (intermediate) partition, so initially P = {M}. At
each step, we split each cluster Mq ∈ P based on the missingness of some feature j into two new
sets Mj0

q = {m ∈ Mq : mj = 0} and Mj1
q = {m ∈ Mq : mj = 1}. We split the training

dataset correspondingly into Ij0
q = {(xi, yi) : mi ∈ Mj0

q } and Ij1
q = {(xi, yi) : mi ∈ Mj1

q }. To
determine the feature on which to split, we introduce a loss function:

L(Mq, j) ≜min
w

∑
i∈Ij0

q

ℓ(yi,w
⊤x′

i) + min
w

∑
i∈Ij1

q

ℓ(yi,w
⊤x′

i)

where x′
i is xi with missing values imputed by zero. In other words, L(Mq, j) is the total loss from

training linear classifiers on Ij0
q and Ij1

q .

L(Mq, j) satisfies two desirable properties. First, it can be calculated efficiently as it does not include
fairness risk, which is crucial as there are O(d) candidate features for each split. Second, L(Mq, j)
guarantees that the total loss with respect to the standard classifiers∑

Mq∈P
min
w

∑
i∈Iq

ℓ(yi,w
⊤x′

i)
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never increases after a split, provided that we split a cluster Mq only if L(Mq, j) <
minw

∑
i∈Iq

ℓ(yi,w
⊤x′

i), i.e. the two new classifiers collectively perform at least as well as a
classifier trained on the whole cluster.

To address the fairness concerns of having clusters with small sample size or sample imbalance, we
require each cluster to have balanced data from each group. A feature j is considered for splitting
only if Ij0

q and Ij1
q satisfy bounded representation for chosen parameters α, β:

β ≤
|{xi ∈ Ijk

q |si = s}|
|Ijk

q |
≤ α, s ∈ S, k ∈ {0, 1}.

We also impose a minimum permissible cluster size k for Ij0
q and Ij1

q . We will denote the set of
features j that satisfy these constraints by G(Mq). At each splitting iteration for each cluster Mq , we
split on j∗ ∈ argminG(Mq) L(Mq, j). After obtaining clusters {Mq}Qq=1, we apply an off-the-shelf
fairness intervention to train a fair linear classifier on each cluster. The fairness constraints we
enforce during clustering ensure that the classifiers for each cluster can generalize to fresh data. We
summarize our recursive partitioning method in Algorithm 1 (Appendix C).

5 Adapting Non-Linear Fair Classifiers to Missing Values

The algorithms above take advantage of the interpretability of linear classifiers to “deactivate” missing
features via zero imputation. We now provide a general algorithm for nonlinear classifiers where the
effect of zero imputation may be less clear. We introduce FairMissBag, a fair bagging algorithm
that can be applied to any fair classifier to handle missing values. The algorithm proceeds in three
steps (see Figure 4b, Appendix C for an illustration).

• The training data D is separated into groups by sensitive attribute and label Ds,y =
{(xi, yi, si)|si = s, yi = y}. From each Ds,y, we sample |Ds,y| data points uniformly with
replacement. We combine these samples to create a new dataset of the same size as the original
dataset. Missing indicators are added to each data point and an imputation method is used on each
subsample separately. We repeat this process B times, creating B distinct datasets.

• Apply an off-the-shelf fairness intervention to train a classifier on each resampled dataset, yielding
B classifiers in total.

• To make a prediction on a new data point, one of the B fair classifiers is chosen uniformly at
random. We return the prediction from this classifier. Alternatively, if the classifiers output a
probability or score for each label, the scores from all classifiers are averaged to generate an output.

In the first step, the uniform resampling procedure ensures sufficient sample size and diversity by
preserving the balance of data across sensitive attribute and outcome, relative to the original data.
Additionally, the inclusion of missing indicators as input features (Section 4.1) prevents the issue
of reduced fairness-accuracy curve described in Theorem 1. Our procedure is similar to the fair
resampling procedure introduced in Kamiran and Calders [28] and Wang and Singh [58] except that
we relax the independence assumption of S and Y . This is advantageous in, for example, healthcare
scenarios where a demographic group may have a higher prevalence of a disease (e.g., determined by
age). It is likely desirable for a model to select patients from this group for treatment at a higher rate
rather than enforce independence between S and Y by equalizing the selection rate between groups.

We show that our ensemble strategy in step 3 also preserves fairness by extending the analysis in [19].
We use equalized odds here as an example; the same fairness guarantee also holds for other fairness
constraints such as statistical parity and equality of opportunity. If the base classifiers output scores
(probabilities) for each class, an analogous argument justifies averaging the scores.
Lemma 1. Suppose we have an ensemble of classifiers C = {Cj}Mj=1 such that each classifier satisfies
an equalized odds constraint, i.e. there exists ε such that for all j,

|Pr(Cj(X) = 1|Y = y, S = s)− Pr(Cj(X) = 1|Y = y, S = s′)| ≤ ε ∀y ∈ {0, 1}, s, s′ ∈ S.

Let p(j) denote a probability distribution over the classifiers and C(x) be the prediction obtained by
randomly selecting a base classifier Ck from p(j) and computing Ck(x). Then C also satisfies the
equalized odds constraint.
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6 Numerical Experiments

We evaluate our adaptive algorithms with a comprehensive set of numerical experiments by comparing
our algorithms coupled with state-of-the-art fairness intervention algorithms on several datasets. We
describe the setup and implementation and discuss the results of the experiments. Refer to Appendix
D for additional experiment details.

6.1 Experimental setup

Datasets. We test our adaptive algorithms on COMPAS [34], Adult [12], the IPUMS Adult recon-
struction [9, 15], and the High School Longitudinal Study (HSLS) dataset [22]. We refer the reader to
Appendix D.2 for details on pre-processing each dataset and generating missing values for COMPAS
and the two versions of Adult. The sensitive attribute is race in COMPAS and sex in Adult.

HSLS is a dataset of over 23,000 high school students followed from 9th through 12th grade that
includes surveys from students, teachers, and school staff, demographic information, and academic
assessment results [22]. We use an 11-feature subset of the dataset. The sensitive attribute is race
(White/Asian versus Black, Hispanic, Native American, and Pacific Islander) and the predictive label
is a student’s 9th grade math test score. We consider only data points where both race and 9th grade
math test score are present because our experiments use fairness interventions that use knowledge of
the group attribute and label to calculate fairness metrics. HSLS exhibits high rates of missingness as
well as significant disparities in missingnesss with respect to race. For instance, 35.5% of White and
Asian students did not report their secondary caregiver’s highest level of education; this proportion
increases to 51.0% for underrepresented minority students [23].

Fairness intervention algorithms. We use DispMistreatment [61] and FairProjection [2]
as two benchmark algorithms and defer additional experimental results using other benchmarks
(Reduction [1], EqOdds [20], ROC [29], Leveraging [8]) to Appendix E. All of these algorithms
are designed for complete data and require missing values to be imputed before training.

For each combination of adaptive algorithm and fairness intervention, we plot the fairness-accuracy
tradeoff curve obtained from varying hyperparameters (see Appendix D.3). We obtain a convex curve
by omitting points that are Pareto dominated, i.e. there exists another point with higher accuracy
and lower discrimination. The fairness metrics used are FNR difference and mean equalized odds,
defined as 1

2 (FNR difference + FPR difference).

6.2 Linear fair classifiers

We test different combinations of the above fairness interventions with the adaptive algorithms
in Section 4 using logistic regression as the base classifier. For the missing pattern clustering
algorithm, we reserve part of the training set as validation to calculate the clustering objective function.
We present results for FairProjection on IPUMS Adult/COMPAS and FairProjection and
DispMistreatment on HSLS. We defer results for other benchmarks to Appendix E.

IPUMS Adult/COMPAS. Figure 1 displays fairness-accuracy curves for COMPAS and the IPUMS
Adult reconstruction. We observe that for the datasets with MCAR and MAR missing values, the three
methods tested have comparable performance with impute-then-classify. However, for the MNAR
datasets, adding missing indicators and affinely adaptive classification significantly outperform the
baseline especially with regard to accuracy, which is consistent with Theorem 1. We omit results for
missing pattern clustering as the majority of trials did not find multiple clusters.

HSLS. Figure 2 displays the fairness-accuracy curves for DispMistreatment and
FairProjection on HSLS. For DispMistreatment, adding missing indicators achieves
marginally improved performance over the baseline, while affinely adaptive classification achieves
the highest accuracy but at the cost of fairness. For FairProjection, all three adaptive methods
outperform the baseline.

Discussion. The experiments on linear fair classifiers show that using the adaptive fairness-
intervention algorithms proposed in Section 4 consistently outperform impute-then-classify in terms
of accuracy and fairness across different datasets. The performance improvement of the adaptive

7



(a) IPUMS Adult, FairProjection

(b) COMPAS, FairProjection

Figure 1: Comparison of adaptive fairness-intervention algorithms on IPUMS Adult and COMPAS
using FairProjection. For each original dataset, we generate three datasets with missing values
corresponding to MCAR, MAR, and MNAR mechanisms (Appendix D.2). Error bars depict the
standard error of 10 runs with different train-test splits.

fairness-intervention algorithms also increases when the missing patterns of the data encode signifi-
cant information about the label, as is the case in the MNAR COMPAS/Adult datasets. Interestingly,
although affinely adaptive classification and missing pattern clustering are both more expressive
variants of adding missing indicators, adding missing indicators was able to achieve comparable
performance to both methods in most cases. We include an additional experiment in Appendix E on a
synthetic dataset (see Appendix D.1) where missing pattern clustering outperforms all other adaptive
algorithms.

In short, we believe that the best adaptive algorithm is not universal. Our suggestion is to consider the
choice of algorithm as a hyperparameter and select by using a validation set and considering the trade-
offs between the methods proposed. Missing value indicators, though performing worse on average,
has the benefit of being simple and interpretable. Affinely adaptive classification provides a potential
accuracy gain at the cost of additional complexity, and missing pattern clustering should be preferred
when there is sufficient data to cluster missing patterns in an advantageous way. Regardless of this
choice, however, our results show that preserving information about missing values is important to
achieve the best possible group fairness and accuracy.

6.3 Non-linear fair classifiers

We test the FairMissBag ensemble method proposed in Section 5 with FairProjection,
Reduction, and EqOdds. The base classifier for all fairness-intervention algorithms is a random for-
est consisting of 20 decision trees with maximum depth 3. We run experiments with three imputation
methods: mean, K-nearest neighbor (KNN), and iterative imputation [44]. We present results for
FairMissBag on HSLS and defer additional experimental results to the appendix.
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Figure 2: Comparison of adaptive fairness-intervention algorithms on HSLS dataset, using
DispMistreatment (left) and FairProjection (right). Error bars depict the standard error of 10
runs with different train-test splits.

Figure 3: Results for FairMissBag on HSLS, using Reduction, EqOdds, and FairProjection.
Fairness-accuracy curves under mean, KNN, and iterative imputation are shown, respectively. Error
bars depict the standard error of 5 runs with different train-test splits.

Figure 3 displays the results of the FairMissBag experiment on HSLS. We observe that for
Reduction, FairMissBag yields a meaningful fairness-accuracy improvement for KNN and itera-
tive imputation. A similar improvement is observed for EqOdds for mean and KNN imputation. For
FairProjection, FairMissBag generally extends the fairness-accuracy curve, providing higher
accuracy with a tradeoff of increased fairness risk.

Discussion. We observe that using FairMissBag yields fairness and accuracy improvements over
impute-then-classify. Additionally, for both accuracy and fairness, the relative performance of
the three imputation methods we tested depends on the dataset used and the fairness-intervention
algorithm applied. We conclude that the choice of imputation method can significantly influence
accuracy and fairness. This corroborates previous findings in e.g. [23, 26, 36] that the best imputation
method for a given prediction task and setup is not always a clear choice.
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7 Conclusion and Limitations

In this work, we investigated the impact of missing values on algorithmic fairness. We introduced
adaptive algorithms that can be used with any preexisting fairness-intervention algorithm to achieve
higher accuracy and fairness than impute-then-classify. The flexibility and consistency of our
algorithms highlight the importance of preserving the information in the missing patterns in fair
learning pipelines. We note, however, that using missingness information in a fair classifier is not
immune to potential negative impacts. For example, an individual may be incentivized to purposefully
hide data if their true values are less favorable than even NA. In missing pattern clustering, an
individual may be classified less favorably or accurately than if a classifier from a different cluster
were used. These scenarios highlight considerations with respect to individual and preference-based
fairness notions [55] and the importance of making careful, informed choices for both the adaptive
algorithm and the fairness intervention. Another potential challenge is if sensitive groups are not
known prior to deployment and must be learned online. Nevertheless, we hope that our insights can
inform future work in fair classification with missing values.

Data imputation remains commonly used in data science pipelines. However, the predictions output
by ML models are dependent on the imputation method used. When considering single data points,
this presents an important challenge from an individual fairness perspective, because the choice of
imputation may arbitrarily affect an individual’s outcome [13]. The effect of imputation choice on
individual outcomes parallels the “crisis in justifiability” that arises from model multiplicity, where a
model may be unjustifiable for an individual if another equally accurate model provides the individual
a better outcome [5, 41]. A future work direction is examining how to choose an imputation given
these challenges and how the user may be involved in making this choice. Additionally, increased
classification error or outcome volatility may harm individuals with many missing values. This raises
the critical question of whether to withhold classification for individuals with too many missing
values and how to provide resources to unclassified individuals. Ultimately, the ubiquity of missing
data in the real world means that new developments in fairness with missing values have the potential
to be broadly impactful and create better, fairer societal outcomes.
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A Omitted Proofs

A.1 Proof of Theorem 1

Proof. We prove this theorem via construction. We consider X = {0, 1} and construct the probability
distribution PS,X,Y in the following way:

Pr(Y = 0, X = 0|S = s) = Pr(Y = 0, X = 1|S = s) =
1− αs

2
, Pr(Y = 0, X = NA|S = s) = 0,

Pr(Y = 1, X = 0|S = s) = Pr(Y = 1, X = 1|S = s) = 0, Pr(Y = 1, X = NA|S = s) = αs,

and Pr(S = s) = qs. By the construction of PS,X,Y , we have

Pr(Y = 1, S = 0) = α0q0, Pr(Y = 1, S = 1) = α1q1,

Pr(Y = 0, S = 0) = (1− α0)q0, Pr(Y = 0, S = 1) = (1− α1)q1.

For this probability distribution, we can compute

I(M ;Y ) = (1− α) log
1

1− α
+ α log

1

α
= g(α).

Consider a classifier h such that h(0) = h(1) = 0 and h(NA) = 1. This classifier satisfies
E [I(h(X) = Y )] = 1 and Disc(h) = 0 where Disc(h) is the equalized odds constraint. As a
result, Fϵ(PS,X,Y ) = 1 for any ϵ. By symmetry, we assume fimp(NA) = 1 without loss of generality.
Therefore, we have

Pr(Y = 0, X̂ = 0|S = s) =
1− αs

2
Pr(Y = 0, X̂ = 1|S = s) =

1− αs

2
,

Pr(Y = 1, X̂ = 0|S = s) = 0, Pr(Y = 1, X̂ = 1|S = s) = αs.

We represent a probabilistic classifier h as

Pr(Ŷ = 0|X̂ = 0) = p0, Pr(Ŷ = 1|X̂ = 0) = 1− p0,

Pr(Ŷ = 0|X̂ = 1) = p1, Pr(Ŷ = 1|X̂ = 1) = 1− p1.

Consequently,

Pr(Ŷ = 0|Y = 0, S = s) =
p0 + p1

2
, Pr(Ŷ = 1|Y = 0, S = s) = 1− p0 + p1

2
,

Pr(Ŷ = 0|Y = 1, S = s) = p1, Pr(Ŷ = 1|Y = 1, S = s) = 1− p1,

which ensures that Disc(h) = 0 where Disc(h) is the equalized odds constraint. Furthermore,

E
[
I(Ŷ = Y )

]
= Pr(Ŷ = Y )

= Pr(Ŷ = 1|Y = 1, S = 0)Pr(Y = 1, S = 0) + Pr(Ŷ = 1|Y = 1, S = 1)Pr(Y = 1, S = 1)

+ Pr(Ŷ = 0|Y = 0, S = 0)Pr(Y = 0, S = 0) + Pr(Ŷ = 0|Y = 0, S = 1)Pr(Y = 0, S = 1)

= (1− p1)(α0q0 + α1q1) +
p0 + p1

2
(1− α0q0 − α1q1).

Note that α0q0 + α1q1 = α. Hence,

max
h

E
[
I(Ŷ = Y )

]
= max

p0,p1∈[0,1]
(1− p1)α+

p0 + p1
2

(1− α)

= max
p0,p1∈[0,1]

α+
1− α

2
p0 +

1− 3α

2
p1.

Since α < 1/3, we have 1−α > 0 and 1− 3α > 0. As a result, the above objective function reaches
its maximum 1− α when p0 and p1 are both equal to 1. In other words, Fϵ(PS,X̂,Y ) = 1− α.
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A.2 Proof of Lemma 1

Proof. Let y ∈ {0, 1} and s, s′ ∈ S. Then

|Pr(C(X) = 1|Y = y, S = s)− Pr(C(X) = 1|Y = y, S = s′)|

=

∣∣∣∣∣∣
∑
j

pj Pr(Cj(X) = 1|Y = y, S = s)−
∑
j

pj Pr(Cj(X) = 1|Y = y, S = s′)

∣∣∣∣∣∣
≤
∑
j

pj |Pr(Cj(X) = 1|Y = y, S = s)− Pr(Cj(X) = 1|Y = y, S = s′)|

≤
∑
j

pjε = ε.

B Information-Theoretic Interpretation of Adding Missing Indicators

We provide an information-theoretic perspective for how adding misisng indicators preserves infor-
mation in the missing patterns. Let Y be the unobserved predictive label we wish to recover, X
a variable representing the input features, and X̂ the input features under an imputation function
fimp. By the data processing inequality, I(Y ;X) ≥ I(Y ; X̂), showing that imputation can lose
information about Y . In contrast, because we can recover X perfectly from (X̂,M) without using
any information from Y , I(Y ;X) = I(Y ; (X̂,M)), i.e. all of the original information about Y is
preserved.

Furthermore, we can use Fano’s inequality [Theorem 6.3 in 46] to relate the information loss from
imputation to classification error probability. Let h be a classifier and denote the classification error
as pe(X) = P (Y ̸= h(X)). Fano’s inequality states that

H2(pe(X)) + pe(X) log(|Y| − 1) ≥ H(Y |X).

where Y denotes the support of Y , H2(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entopy
function, and H(Y |X) = −

∑
i,j p(yi, xj) log p(yi|xj) is the conditional entropy. Since Y ∈ {0, 1},

the inequality reduces to

H2(pe(X)) ≥ H(Y |X) =⇒ pe(X) ≥ H(Y |X)− (log2 3− 1)

since H2(p) ≤ p+ log2 3− 1 with equality achieved at p = 1
3 . This is a lower bound on pe(X) in

terms of H(Y |X). Now, we can compare H(Y |X̂) and H(Y |(X̂,M)). By above, we have

I(Y ; (X̂,M)) ≥ I(Y ; X̂)

H(Y )−H(Y |(X̂,M)) ≥ H(Y )−H(Y |X̂)

H(Y |(X̂,M)) ≤ H(Y |X̂).

Therefore, Fano’s inequality gives a better lower bound for pe(X̂,M) than for pe(X̂). We conclude
that a classifier trained from adding missing indicators is more likely to achieve higher accuracy
under the same group fairness constraint than a classifier trained using impute-then-classify.

C More Details on Algorithms

We include a figure illustrating the three adaptive algorithms presented in Section 4 for fair linear
classifiers and the FairMissBag algorithm presented in Section 5. We also provide pseudocode for
the recursive partitioning procedure in the missing pattern clustering algorithm and the fair uniform
resampling procedure in FairMissBag.
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C.1 Illustration of adaptive algorithms

(a) Fair linear classifiers (b) FairMissBag

Figure 4: Illustration of the three adaptive algorithms for fair linear classifiers (left) and FairMissBag
(right). Adding missing indicators and affinely adaptive classification encode missing value patterns
via additional input features, while missing pattern clustering partitions the dataset based on missing
patterns. FairMissBag is a three-step algorithm consisting of fair resampling, using a fairness
intervention to train a fair classifier on each resampled dataset, and obtaining a prediction from the
ensemble of fair classifiers.

C.2 Recursive partitioning algorithm for missing pattern clustering

We begin with a single cluster containing the entire dataset. At each step, we split a cluster on a
feature j∗ ∈ G(Mq) that minimizes the objective function L(Mq, j), where G(Mq) denotes the set
of features that satisfy the bounded representation and minimum cluster size constraints.

Algorithm 1 Recursive partitioning of missing patterns.

Input: D = {xi, si, yi}ni=1

Initialize: partition P = ∅,P ′ =M
while P ′ ̸= ∅ do
Mq ← P ′[0]
P ′ ← P ′ \Mq

if G(Mq) = ∅ then
P ← P ∪Mq

continue
end if
j∗ ← argminG(Mq) L(Mq, j)
if L(Mq, j

∗) < minh∈H
∑

i∈Iq
ℓ(yi, h(xi)) then

P ′ ← P ′ ∪ {Mj0
q ,Mj1

q }
else
P ← P ∪Mq

end if
end while
Return: P = {Mq}Qq=1

C.3 Fair uniform resampling algorithm

The data is separated into groups based on sensitive attribute and label. From each group, we make a
new group of the same size by sampling data points uniformly with replacement. These groups are
combined to create a new subsample of the same size as the original dataset.
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Figure 5: Plot of the synthetic data. The points on the x-axis represent data with X2 missing.

Algorithm 2 Single iteration of fair uniform resampling.

Input: D = {xi, si, yi}ni=1

Initialize: D′ = ∅
for s ∈ {0, 1} do

for y ∈ {0, 1} do
Ds,y ← {xi, si, yi ∈ D|si = s, yi = y}
Sample |Ds,y| times from Ds,y uniformly with replacement and append to D′

end for
end for
Add missing indicators m to D′, apply imputation method fimp
Return: Resampled dataset D′

D Details on the Experimental Results

We provide a description of the synthetic dataset mentioned at the end of Section 6.2 and a description
of COMPAS/Adult. We also summarize hyperparameters and implementation details.

D.1 Description of synthetic data

We create a synthetic dataset by sampling data points from a known distribution and generating
artificial missing values. The dataset contains two features, X1 and X2, with binary sensitive attribute
S and binary label Y . There are 2400 data points in total. X1 is present for all data points, while X2

is missing in 800 of the data points. For each combination of predictive label and sensitive attribute,
we sample data points from a different, fixed distribution (bivariate Normal for data points with
X2 present and Gaussian for data points with X2 missing). The distribution of the data points is
summarized in table 1, and we visualize 800 of the data points in figure 5.

X2 present

Group Distribution N

P (X1, X2|Y = 1, S = 1) N
([
−3
−3

]
,

[
2 0
0 2

])
400

P (X1, X2|Y = 1, S = 0) N
([
−3
+3

]
,

[
2 0
0 2

])
400

P (X1, X2|Y = 0, S = 1) N
([

+3
−3

]
,

[
2 0
0 2

])
400

P (X1, X2|Y = 0, S = 0) N
([

+3
+3

]
,

[
2 0
0 2

])
400

X2 missing

Group Distribution N

P (X1|Y = 1, S = 1) N (3, 3) 100

P (X1|Y = 1, S = 0) N (3, 3) 300

P (X1|Y = 0, S = 1) N (−3, 3) 100

P (X1|Y = 0, S = 0) N (−3, 3) 300

Table 1: Distribution of the synthetic data. N denotes the number of data points sampled from the
group distribution.
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D.2 Description of COMPAS and Adult datasets

COMPAS. The COMPAS (Correctional Offender Management Profiling for Alternative Sanctions)
software is a proprietary tool that is used in the criminal justice system in the United States to
predict recidivism. COMPAS uses a defendant’s criminal history along with other features such as
demographic information to assign a score indicating the predicted risk of the defendant recidivating
within a two-year period. Racial discrimination in the COMPAS algorithm’s predictions has been
highly publicized and analyzed [11, 16, 34].

We restrict our experiments with the COMPAS dataset to the set of White and Black defendants. The
predictive features we use are age (three categories of less than 25, 25 to 45, and over 45), race, sex,
normalized number of prior convictions, and charge degree (misdemeanor/felony). The predictive
label is a binary indicator for whether the defendant recidivated in a two-year period, and the sensitive
attribute is race (S = 0 for Black defendants, S = 1 for White defendants). We additionally balance
the dataset so that the number of Black and White defendants in the data are equal, yielding 4206
data points in the dataset.

Adult. The Adult dataset is a subset of the data from the 1994 Census. The predictive label is a
indicator for whether a person’s annual income is over $50,000, and the sensitive attribute is gender.
We use all of the 14 features in the original dataset except fnlwgt (see [12]). We first balance the
dataset by the predictive label and then by gender, yielding 6530 points in the dataset. All features
are scaled to be between 0 and 1. We additionally use IPUMS Adult, a reconstructed superset of the
original Adult dataset [9, 15], which contains 11996 points after balancing for predictive label and
gender.

Missing value generation. Since COMPAS is a complete dataset and Adult has a very low percentage
of missing values, we generate missing values synthetically. For each dataset, we create three datasets
with missing values corresponding to MCAR, MAR, and MNAR to capture the range of possible
missing mechanisms. For each missing mechanism, we choose one or more features to contain
missing values. Then, we randomly replace some of the values of the feature(s) with NA with a given
probability. Other than the MCAR setting, we allow the probability to vary depending on the value
of one of more features in the data or a binary indicator corresponding to the feature, including the
missing feature(s). Notably, for MNAR, we allow the missingness of a feature to depend on the
predictive label to simulate the scenario where the missingness pattern and label are linked. Statistics
for missing values in COMPAS and Adult are provided in Table 2.

COMPAS

Mechanism Missing feature I Pr(MS|I = 0) Pr(MS|I = 1)

MCAR priors_count N/A 0.2 0.2

MAR priors_count sex 0.1 0.4

MNAR priors_count two_year_recid 0.1 0.4
sex sex 0.1 0.4

Adult

Mechanism Missing feature I Pr(MS|I = 0) Pr(MS|I = 1)

MCAR age N/A 0.2 0.2

MAR occupation gender 0.4 0.1

MNAR capital-gain income 0.3 0.1
workclass I[age < 0.2] 0.1 0.4

Table 2: Missing value statistics for COMPAS and Adult. I denotes the feature or indicator on
which the probability of missingness depends. As an example, for COMPAS in the MAR setting, the
missing feature is priors_count; the probability of priors_count being missing is 0.1 among women
(sex = 0) and 0.4 among men (sex = 1).
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D.3 Hyperparameters

For algorithms with tunable hyperparameters used in the experiments, we report the values of the
hyperparameters that were tested in Table 3.

Algorithm Hyperparameter Synthetic COMPAS/Adult HSLS

DispMistreatment τ {0.01, 0.1, 1, 10, 100} {0.01, 0.1, 1, 2, 5, 10} {0.01, 0.1, 1, 10, 100}

FairProjection tol {0, 0.001, 0.01, 0.1, 0.5} {0, 0.001, 0.01, 0.05, 0.1, 0.5, 1} {0, 0.001, 0.01, 0.1, 0.5}

Reduction ε N/A N/A {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2}

ROC ε N/A N/A {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}

Missing pattern clustering k 1 N/A {500, 1000, 1500, 2000, 4000}
(α, β) (1, 0) N/A (0.6, 0.3)

Table 3: Summary of hyperparameters tested for the experiments with linear fair classifiers. The
DisparateMistreatment, FairProjection, Reduction, and ROC fairness-intervention algo-
rithms have tunable hyperparameters, as well as the missing pattern clustering adaptive algorithm.

Algorithm Hyperparameter Values

FairProjection tol {0.000, 0.001, 0.01, 0.1}

Reduction ε {0.001, 0.01, 0.1, 0.5, 1}

FairMissBag # bags 20 (FairProjection)
10 (Reduction, EqOdds)

Table 4: Summary of hyperparameters tested for the experiments with general fair classifiers. The
FairProjection and Reduction fairness-intervention algorithms have tunable hyperparameters,
as does FairMissBag.

D.4 Implementation details

We run DispMistreatment with a FNR difference constraint, FairProjection, Reduction,
EqOdds, ROC with an equalized odds/mean equalized odds (EO/MEO) constraint, and Leveraging
with an equality of opportunity constraint.

We implement DispMistreatment using the code at https://github.com/mbilalzafar/
fair-classification.For FairProjection, we use code from https://github.com/
HsiangHsu/Fair-Projection. The original code for Leveraging is found at https://github.
com/lucaoneto/NIPS2019_Fairness; we use a Python version of the code included in the
FairProjection repository. Reduction, EqOdds, and ROC are implemented using the AIF360
library [3]. All experiments were run on a personal computer with 4 CPU cores and 16GB memory.

E Additional Experimental Results

E.1 Linear fair classifiers

Synthetic data. Figure 6 displays fairness-accuracy curves for the synthetic dataset. We see that for
both DispMistreatment and FairProjection, missing pattern clustering (Section 4.3) achieves
near-perfect accuracy with very little discrimination. In constrast, the baseline performs much worse
in both cases; for DispMistreatment, the baseline classifier only achieves the same fairness as
missing pattern clustering with an accuracy that is essentially no better than a random guess. Adding
missing indicators outperforms the baseline for DispMistreatment but remains significantly worse
than missing pattern clustering, and performs nearly identically to the baseline in FairProjection.

These results make intuitive sense given the distribution of the synthetic data. I[X1 < 0] is a
near-perfect linear classifier for the data points with X2 present, and I[X1 > 0] is a near-perfect
linear classifier for the data points with X2 missing. However, if we use impute-then-classify with
zero imputation, a baseline linear classifier will perform poorly on the data points with X2 missing.
Moreover, because the S = 0 sensitive group has many more such points, the group will likely suffer
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Figure 6: Comparison of adaptive fairness-intervention algorithms on the synthetic dataset, using
DispMistreatment (left) and FairProjection (right). Error bars depict the standard error of 5
runs with different train-test splits.

from higher FNR and FPR, increasing the discrimination. Furthermore, this is true even if a missing
indicator for X2 is added, as the indicator can only provide an adjustment for the bias and not the
coefficient of X1. However, if missing pattern clustering is used, separate linear classifiers can be
trained on each cluster to reach very high accuracy and fairness.

(a) COMPAS, DispMistreatment

(b) Adult, DispMistreatment

Figure 7: Comparison of adaptive fairness-intervention algorithms on COMPAS and Adult using
DispMistreatment. For each of COMPAS and Adult, we generate three datasets with missing
values corresponding to MCAR, MAR, and MNAR mechanisms (Appendix D.2). Error bars depict
the standard error of 10 runs with different train-test splits.

HSLS. Figure 8 displays the fairness-accuracy curves for Reduction, EqOdds, ROC, Leveraging.
We see that adding missing indicators improves the fairness-accuracy tradeoff for all fairness inter-
ventions except EqOdds.

We report additional results for the missing pattern clustering algorithm on the HSLS dataset. As
indicated above, we tested minimum cluster sizes of 500, 1000, 1500, 2000, and 4000. The average
number of clusters produced from missing pattern clustering across all trials was 2.5 for k = 500, 1.8
for k = 1000 and k = 1500, 1.5 for k = 2000, and 1.3 for k = 4000. The highest number of clusters
obtained from a single trial was 5. As the minimum cluster size is increased, the average number
of clusters decreases monotonically as expected. The low average cluster counts indicate that the
missing pattern clustering algorithm was not always able to find a viable split of the missing patterns
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Figure 8: Comparison of adding missing indicators (Section 4.1) with baseline impute-then-classify
on HSLS, using Reduction, EqOdds, ROC, and Leveraging. Error bars depict the standard error of
15 runs with different train-test splits. .

Figure 9: Results for FairMissBag on COMPAS using FairProjection. Using COMPAS, we
generate three datasets with missing values corresponding to MCAR, MAR and MNAR mechanisms
(Section D.2). Fairness-accuracy curves for mean, KNN, and iterative imputation are shown. Error
bars depict the standard error of 5 runs with different train-test splits.

(see the discussion of the semi-synthetic experimental results in Section 6.2 for an explanation on
this behavior).

E.2 Non-linear fair classifiers

COMPAS. Figure 9 displays the results of the FairMissBag experiment on COMPAS. When
missing values are MNAR, FairMissBag shows large improvements in both accuracy and fairness
for all three imputation mechanisms.
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