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Abstract

We consider the problem of producing fair probabilistic classifiers for multi-class
classification tasks. We formulate this problem in terms of “projecting” a pre-
trained (and potentially unfair) classifier onto the set of models that satisfy target
group-fairness requirements. The new, projected model is given by post-processing
the outputs of the pre-trained classifier by a multiplicative factor. We provide a
parallelizable, iterative algorithm for computing the projected classifier and derive
both sample complexity and convergence guarantees. Comprehensive numerical
comparisons with state-of-the-art benchmarks demonstrate that our approach main-
tains competitive performance in terms of accuracy-fairness trade-off curves, while
achieving favorable runtime on large datasets. We also evaluate our method at scale
on an open dataset with multiple classes, multiple intersectional groups, and over
1M samples.

1 Introduction

Machine learning (ML) algorithms are increasingly used to automate decisions that have significant
social consequences. This trend has led to a surge of research on designing and evaluating fairness
interventions that prevent discrimination in ML models. When dealing with group fairness, fairness
interventions aim to ensure that a ML model does not discriminate against different groups determined
by, for example, race, sex, and/or nationality. Extensive comparisons between discrimination control
methods can be found in [BDHT 18, FSV*119, WRC21]. As these studies demonstrate, there is still
no “best” fairness intervention for ML, and the majority of existing approaches are tailored to either
binary classification tasks, binary population groups, or both.> Moreover, discrimination control
methods are often tested on overused datasets of modest sizes collected in either the US or Europe
(e.g., UCI Adult [Lic13] and COMPAS [ALMKI16]).

Most fairness interventions in ML focus on binary outcomes. In this case, the classification output is
either positive or negative, and group-fairness metrics are tailored to binary decisions [HPS16]. While
binary classification covers a range of ML tasks of societal importance (e.g., whether to approve a
loan, whether to admit a student), there are many cases where the predicted variable is not binary. For
example, in education, grading algorithms assign one out of several grades to students. In healthcare,
predicted outcomes are frequently not binary (e.g., severity of disease).

We introduce a theoretically-grounded discrimination control method called FairProjection. This
method ensures group fairness in multi-class classification for several, potentially overlapping popula-
tion groups. We consider group fairness metrics that are natural multi-class extensions of their binary
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classification counterparts, such as statistical parity [FFM ™ 15], equalized odds [HPS16], and error
rate imbalance [PRW ™17, Cho17]. When restricted to two predicted classes, FairProjection per-
forms competitively against state-of-the-art fairness interventions tailored to binary classification
tasks. FairProjection is model-agnostic (i.e., applicable to any model class) and scalable to
datasets that are orders of magnitude larger than standard benchmarks found in the fair ML literature.

Our approach is based on an information-theoretic formulation called information projection. We
show that this formulation is particularly well-suited for ensuring fairness in probabilistic classifiers
with multi-class outputs. Given a probability distribution P and a convex set of distributions P, the
goal of information projection is to find the “closest” distribution to P in P. The study of information
projection can be traced back to [Csi75], which used KL-divergence to measure “distance” between
distributions. Since then, information projection has been extended to other divergence measures,
such as f-divergences [Csi95] and Rényi divergences [KS16, KS15]. Recently, [AAW " 20a] studied
how to project a probabilistic classifier, viewed as a conditional distribution, onto the set of classifiers
that satisfy target group-fairness requirements. Remarkably, the projected classifier is obtained by
multiplying (i.e., post-processing) the predictions of the original classifier by a factor that depends on
the group-fairness constraints.

Prior work on information projection relies on a critical—and limiting—information-theoretic as-
sumption: the underlying probability distributions are known exactly. This is infeasible in practical
ML applications, where only a set of training examples sampled from the underlying data distribution
is available. FairProjection fills this gap by using an efficient algorithm for computing the pro-
jected classifier with finite samples. We establish theoretical guarantees for this algorithm in terms of
convergence and sample complexity.

Notably, our proposed fairness intervention is parallelizable (e.g., on a GPU). Hence,
FairProjection scales to datasets with the number of samples comparable to the population
of many US states (> 10° samples). We provide a TensorFlow [AAB' 15] implementation of
FairProjection® and apply it to post-process the outputs of probabilistic classifiers to ensure group
fairness.

We benchmark our post-processing approach against several state-of-the-art fairness interventions
selected based on the availability of reproducible code, and qualitatively compare it against many
others. Our numerical results are among the most comprehensive comparison of fairness interventions
to date. We present performance results on the HSLS (High School Longitudinal Study, used
in [JWC22]), Adult [Lic13], and COMPAS [ALMK16] datasets.

We also evaluate FairProjection on a dataset derived from open and anonymized data from Brazil’s
national high school exam—the Exame Nacional do Ensino Médio (ENEM)—with over 1 million
samples. We made use of this dataset due to the need for large-scale benchmarks for evaluating
fairness interventions in multi-class classification tasks. We also answer recent calls [BZZ 121,
DHMSZ21] for moving away from overused datasets such as Adult [Lic13] and COMPAS [ALMKI16].
We hope that the ENEM dataset encourages researchers in the field of fair ML to test their methods
within broader contexts.*

In summary, our main contributions are: (i) We introduce a post-processing fairness intervention
for multi-class classification problems that can account for multiple protected groups and is scal-
able to large datasets; (ii) We derive finite-sample guarantees and convergence-rate results for our
post-processing method. Importantly, FairProjection makes information projection practical
without requiring exact knowledge of probability distributions; (iii) We demonstrate the favourable
performance of our approach through comprehensive benchmarks against state-of-the-art fairness
interventions; (iv) We put forth a new large-scale dataset (ENEM) for benchmarking discrimination
control methods in multi-class classification tasks; this dataset may encourage researchers in fair ML
to evaluate their methods beyond Adult and COMPAS.

Related work. We summarize key differentiating factors from prior work in Table 1 and provide a
more in-depth discussion in Appendix B.5. The fairness interventions that are the most similar to ours

30ur code can be found at https://github.com/HsiangHsu/Fair-Projection.

*Since (to the best of our knowledge) the ENEM dataset has not been used in fair ML, we provide in
Appendix C a datasheet for the ENEM dataset. The data can be found at [INE20] and code for pre-processing
the data can be found at https://github.com/HsiangHsu/Fair-Projection.
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Method Feature
Multiclass  Multigroup Scores Curve Parallel Rate Metric

Reductions [ABD " 18] X v v v X v/ SP,(M)EO
Reject-option [KKZ12] X v X v X X SP,(M)EO
EqOdds [HPS16] X v X X X v EO

LevEqOpp [CDH™ 19] X X X X X X FNR

CalEqOdds [PRW ' 17] X X v X X v MEO
FACT [KCT20] X X X v X X SP,(M)EO
Identifying® [JN20] /> v v v X X SP,(M)EO
FST [WRC20, WRC21] X v v v X v/ SP,(M)EO
Overlapping [YCK20] v v v v X X SP,(M)EO
Adversarial [ZLM18] v v N/AS v X SP,(M)EO
FairProjection (ours) v v v v v v SP, M)EO

Table 1: Comparison between benchmark methods. Multiclass/multigroup: implementation takes datasets
with multiclass/multigroup labels; Scores: processes raw outputs of probabilistic classifiers; Curve: outputs
fairness-accuracy tradeoff curves (instead of a single point); Parallel: parallel implementation (e.g., on GPU)
is available; Rate: convergence rate or sample complexity guarantee is proved; Metric: applicable fairness
metric, with SP<>Statistical Parity, EO<+>Equalized Odds, MEO<+Mean EO. Since FairProjection is a
post-processing method, we focus our comparison on post-processing fairness intervention methods, except for
Reductions [ABD 18], which is a representative in-processing method, and Adversarial [ZLM18], which we
use to benchmark multi-class prediction. For comparing in-processing methods, see [LPB 21, Table 1].

are the FairScoreTransformer [WRC20, WRC21, FST] and the pre-processing method in [JN20].
The FST and [JN20] can be viewed as instantiations of FairProjection when restricted to the
binary classification setting and to cross-entropy (for FST) or KL-divergence (for [JN20]) as the
f-divergence of choice. Thus, our approach is a generalization of both methods to multiple f-
divergences. Importantly, unlike our method, [JN20] requires retraining a classifier multiple times.

A reductions approach for fair classification was introduced in [ABD"18]. When restricted to
binary classification, the benchmarks in Section 5 indicate that the reductions approach consistently
achieves the most competitive fairness-accuracy trade-off compared to ours. FairProjection has
two key differences from [ABD ™ 18]: it is not restricted to binary classification tasks and does not
require refitting a classifier several times over the training dataset. These are also key differentiating
points from [CHKV 19], which presented a meta-algorithm for fair classification that accounts for
multiple constraints and groups. The reductions approach was later significantly generalized in the
GroupFair method by [YCK20] to account for overlapping groups and multiple predicted classes.
Unlike [YCK20], we do not require retraining classifiers.

Several other recent fairness intervention methods consider optimizing accuracy under group-fairness
constraints. In [CJGT19], a “proxy-Lagrangian” formulation was proposed for incorporating non-
differentiable rate constraints, including group fairness constraints. We avoid non-differentiability
issues by considering the probabilities (scores) at the output of the classifier instead of thresholded
decisions. In [ZVRG17], a fairness-constrained optimization was introduced that is applicable to
margin-based classifiers (our approach can be used on any probabilistic classifier). In [CDPF*17]
and [MW 18], the fairness-accuracy trade-offs in binary classification tasks are characterized when the
underlying distributions are known. A non-parity-based fairness notion was proposed in [KGZ19],
called “multiaccuracy,” which aims to ensure high accuracy for all subgroups even when the group
information is not given in the data. We limit our analysis to parity notions of group fairness. To
circumvent the non-differentiability of group-fairness constraints, approximate fairness constraints
based on functionals found in information theory have been explored in [LPB*21, Rényi mutual
information], [BNBR 19, Rényi maximal correlation], and [PQC™ 19, maximum mean discrepancy].
We avoid such non-differentiability issues by casting group fairness constraints in the score domain.

S[JN20] mention that their method can be applied to multi-class classification, but their reported benchmarks
are only for binary classification tasks.

8[ZLM18] is an in-processing method unlike other benchmarks in the table. It does not take a pre-trained
classifier as an input.



Fairness Criterion Statistical parity Equalized odds Overall accuracy equality
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Table 2: Standard multi-class group fairness criteria; one fixes o > 0 and iterates over all (a, ¢, ¢’) € [A] x [C]2.

Notation. Boldface Latin letters will always refer to vectors or matrices. The entries of a vector
z are denoted by z;, and those of a matrix G by G; ;. The all-1 and all-0 vectors are denoted by 1
and 0. We set [N] = {1,--- , N} and Ry = [0, 00). The probability simplex over [N] is denoted by
Ay 2 {pec Rf ; 1Tp =1}, and Ax is its (relative) interior. If P is a Borel probability measure
over RN, Z ~ P is a random variable, and f RN — RE is Borel, then the expectation of f(Z)
is denoted by E[f(Z)] = Ep[f] = Ep[f(Z)] = Ez~p[f(Z)]. We use the standard asymptotic
notations O, ©, and (2.

2 Problem formulation and preliminaries

Classification tasks. The essential objects in classification are the input sample space X, the
predicted classes ), and the classifiers. We fix two random variables X and Y, taking values in
sets X and ) £ [C]. Here, (X, Y) is a pair comprised of an input sample and corresponding class
label randomly drawn from X x Y with distribution Px y. A probabilistic classifier is a function
h: X — Ac, where h.(z) represents the probability of sample = € X’ falling in class ¢ € ). Thus,

h gives rise to a Y-valued random variable Y via the distribution Py (c) £ he(z).

Group-fairness constraints. Let S be a group attribute (e.g., race and/or sex), taking val-
ues in S 2 [A]. We consider multi-class generalization of three commonly used group fair-
ness criteria in Table 2. As observed by existing works [see, e.g., ABDT18, MW18, CHKV19,
WRC20, AAW120a], each of these fairness constraints’ can be written in the vector-inequality
form Ep, [Gh] < 0 for a closed-form matrix-valued function G : X — RE*C. For in-
stance, for statistical parity, the G matrix evaluated at a fixed individual x € & has K =
2AC rows indexed by (4,a,¢’) € {0,1} x [A] x [C], where the (,a,c’)-th row is equal to
((—1)6P5(a)_1 > ce(C] Ps|x =g,y =c(a)hE™(z) — (o + (—1)5)) e., with eq,--- , ec denoting

the standard basis for RC. The expressions for the G' matrix corresponding to the other fairness
metrics are given in Appendix A.8, with a detailed derivation of statistical parity in Appendix A.9.
Note that G depends on Pg|xy. If the group attribute S is part of the input feature X, then Pg|x y
is simply replaced with an indicator function. Otherwise, we approximate this conditional distribution
by training a probabilistic classifier.

Goal. Our goal is to design an efficient post-processing method that takes a pre-trained classifier
hP5¢ that may violate some target group-fairness criteria and finds a fair classifier that has the most
similar outputs (i.e., closest utility performance) to that of h"*°.

Fairness through information-projection. We formulate the fairness intervention problem as
follows. For a fixed search space H C AX £ {h: X — Ac}, aloss functionerr : AX x A% — R,
and a base classifier h”**° € AX. one seeks to solve:

mi}llir%ize err (h, hbase> subject to Ep,, [Gh] < 0. (1)
€

The function err quantifies the “closeness” between the scores given by h and hP®°_The constraint
on h can encode any arbitrary statistical information about the joint distribution induced on the

pair (X, }7) Specifically, any constraint Ep_ _ [g(X, f/)] < 0, where g : X x [C] — R, may be
recast in the form (1). Thus, solving the optimization (1) amounts to finding the minimal necessary
perturbation to the base classifier hP%° to make it satisfy a given on-average constraint. Since we

"We remark that our framework can be applied to other fairness constraints, e.g., the ones in [WRC20].



consider raw output scores, we measure “closeness” via f-divergences:

. A ase he(X
e (1) = DI | P) £ Er | 3 0 007 (s )| - F0 @

where f is a convex function over (0, 00). By varying different choices of f, we can obtain e.g.,
cross-entropy (CE, f(t) = — logt) and KL-divergence (f(t) = tlogt). For a chosen f-divergence,
the optimization problem (1) becomes a generalization of information projection [Csi75].

Preliminaries on information-projection. In a recent work [AAW20a], an optimal solution
for the information projection formulation (1) was theoretically characterized. We briefly describe
this result next. Let® H = {h € C(X,A¢); inf., h.(z) > 0} and we introduce the following
definition and assumption.

Definition 1. For p € A, let D;Onj( -, p) denote the convex conjugate of D (- || p):
D™ (v,p) £ sup v"q— Dys(ql|p). 3)
gEAC

Assumption 1. Assume that: (i) f € C*(R), f(1) =0, f/(07) = —oo, and f”(t) > 0 for all ¢ > 0;
(ii) each G .. is bounded, differentiable, and has bounded gradient; (iii) h"2%¢ ¢ 7{, and each hbase
has bounded partial derivatives; and (iv) there is an h € H such that Ep, [Gh] < 0.

Now, the solution for (1) can be obtained by a simple “tilting” of the base classifier’s output, as stated
in the next theorem.

Theorem 1 ((AAW20a)]). If f, R and G satisfy Assumption 1, and X = R?, then there is a

unique solution h°"* for the optimization problem (1) for the f-divergence objective (2). Furthermore,
h°P" is given by the tilt

P (@) = he™*(x) - & (ve(@; X) +y(@3 A7), (2,¢) € X x [C], O]

where: (i) the function ¢ denotes the inverse of f'; (ii) the function v : X x RX — R is defined
by v(x;X) = —G(z)TX; (iii) the function v : X x RE — R is characterized by the equation
Ecppase () [¢ (ve(z; A) + v(23X))] = 1; and (iv) A* € R is any solution to the convex problem

D* 2 juin B [Djf“j (’U(X;)\), hbaSE(X))} . )

If the underlying data distribution is known, Theorem 1 yields an expression for the projected classifier
as a post-processing of the base classifier. However, in practice, we do not know the underlying
distribution and have to approximate it from a finite number of i.i.d. samples. In Section 3, we first
describe how we approximate the solution given in Theorem 1 with finite samples. We then propose
a parallelizable algorithm to solve the approximation in Section 4.

3 A finite-sample approximation of information projection

In practice, Px is unknown and only data points X £ {Xi}ie[ N C X, drawn from Py, are available.
Thus, we propose the following fairness optimization problem. We search for a (multi-class) classifier
h : X — A that solves the following:

fmimi base | D 2 2
minimize Dy (n|[W" | Px) + 71 (Ex_p, [la(X)[3] + b]3)
a:X—RC beR¥ (6)
subject to Es [G-(h+ma)] < 72b,

with Px being the empirical measure (e.g., obtained from a dataset), and 7,75 > 0 prescribed
constants. The terms a and b are added to circumvent infeasibility issues and aid convergence of our

8Here, C(X, A¢) denotes the complete metric space of continuous functions from X to A¢, equipped with

the sup-norm, i.e., ||h|| £ sup, ¢ x |[R(z)||1. In addition, we restrict attention to classifiers bounded away from
the simplex boundary to simplify the proof of strong duality in Theorem 2 (see Remark 1 on our assumptions).



numerical procedure. We show in the following theorem that there is a unique solution for (6), and
that it is given by a tilt (i.e., multiplicative factor) of h°**. The tilting parameter is the solution of a
finite-dimensional strongly convex optimization problem.

Theorem 2. Suppose Assumption 1 holds, and set ¢ = 13 /(271). There exists a unique solution

RPN 10 (6), and it is given by the formula

PN (x) = B (2) - ¢ (ve(23 A8 ) + (@3 A, ) s (2,0) € X x [C], ©)

with v, ¢,y as in Theorem 1, and )‘Z,N € RX is the unique solution to the strongly convex problem

Din® iy Bp, [P (o600 4 5 0 ®
+

where gN £ (G(Xl)/\/ﬁﬂ e 7G(XN)/\/N> IK) S RKX(NC+K).
Proof. See Appendix A.1. O

Theorem 2 shows that: strong duality holds between the primal (6) and (the negative of) the dual (8);
there is a unique classifier hoPHN minimizing our fairness formulation (6); there is a unique solution
/\27 n to the dual (5); and there is an explicit functional form of RhOPYN in terms of /\2‘7 N in (7).
Moreover, Theorem 2 yields a practical two-step procedure for solving the functional optimization
in equation (6): (i) compute the dual variables A by solving the strongly convex optimization in (8);
(ii) tilt the base classifier by using the dual variables according to (7). This process is applied on
real-world datasets using FairProjection (see Algorithm 1) in the next section.

The key distinctions between our formulation and Theorem 1 are that we use the empirical measure

Px (e.g., produced using a dataset with i.i.d. samples), we have a strongly convex dual problem in (8)
(in contrast to the convex program in (5)), and we prove strong duality in Theorem 2 (whereas an
analogous strong duality is absent from the results of [AAW *20a]).

Remark 1. In practice, Assumption 1 is not a limiting factor for Theorem 2 and FairProjection.
This is because: we are considering here a finite-set domain so continuity is automatic; we can perturb
pbase by negligible noise to push it away from the simplex boundary; and the uniform classifier is
strictly feasible. Nevertheless, Assumption 1 simplifies the derivation of our theoretical results.

4 Fair projection and theoretical guarantees

We introduce a parallelizable algorithm, FairProjection, that solves (6) using N i.i.d. data points.
We prove that its utility converges to D* (see (5)) in the population limit and establish both sample-
complexity and convergence rate guarantees. Applying FairProjection to the group-fairness
intervention problem in (1) yields the optimal parameters in (7) for post-processing (i.e., tilting) the
output of a multi-class classifier in order to satisfy target fairness constraints.

The FairProjection algorithm uses ADMM [BPC™11] to solve the convex program in (8). Recall
that it suffices to optimize (8) for computing (6) as proved in Theorem 2. Algorithm 1 presents the
steps of FairProjection, and its detailed derivation is given in Appendix A.2. A salient feature
of FairProjection is its parallelizability. Each step that is done for ¢ varying over [IN] can be
executed for each ¢ separately and in parallel. In particular, this applies to the most computationally
intensive step, the v;-update step. We discuss next how the v;-update step is carried out.

Inner iterations. One approach to carry out the inner iteration in Algorithm 1 that updates v; is to
study the vanishing of the gradient of v ~— D™ (v, p;) + €||vl|3 + a] v (where £ = (p 4 ¢)/2 and

a; € R is some vector). In the KL-divergence case, DCKT_nj is given by a log-sum-exp function, so

its gradient is given by a softmax function, and equating the gradient to zero becomes a fixed-point
equation. We give an iterative routine to solve this fixed point equation in Appendix A.3.1, whose
proof of convergence is discussed in the same section. Beyond the KL-divergence case, setting the
gradient to zero does not seem to be an analytically tractable problem. Nevertheless, we may reduce
the vector minimization in Line 6 of Algorithm 1 to a tractable 1-dimensional root-finding problem,
as the following result aids in showing.



Lemma 1. Forp € A}, a € R, and &€ > 0, if f satisfies Assumption 1, we have that

. conj . qc (ac +'Qc)2
min DY (v, p) + &||v||2 + aTv = —sup —0 + min pof | — | + ——— +0q.. 9
vere  f (v, p) +£|v[3 9e§ cez[;] o pef e 4¢ qe- (9

Proof. See Appendix A.3.2. O

We note that the v;-update steps for both KL and CE (provided in detail in Appendix A.3.3) give, as
a byproduct, the implicitly defined function «(x; A) (see the statements of Theorems 1-2).

Convergence guarantees. Our proposed algorithm, FairProjection, enjoys the following con-

vergence guarantees. The output after the ¢-th iteration )\ét)N converges exponentially fast to XE, N

(see (8)).
Theorem 3. Suppose Assumption 1 holds, and that the matrix (G(X;))ien € REXNC has full
row-rank. Let )‘(ct)N and h'®) be the t-th iteration outputs of FairProjection for the KL-divergence

case. Then, we have the exponential decay of errors ||)‘(¢t)N Ayl = e and KV (z) =
RSN () - (1+ e‘Q(t)) uniformly inx € X as t — oo.

Proof. See Appendix A.5. O

Remark 2. The full-rank assumption on the matrix (G(X;))ien € RE*NC can be ensured by

adding negligible noise to it. Further, although Theorem 3 is shown for the KL-divergence, the
proof directly extends to general f-divergences satisfying Assumption 1 (see Appendix A.6 for
further discussions). Finally, we show in Theorem 6 in Appendix A.7 that carrying ¢t = Q(log N)

iterations of FairProjection, with regularizer { = ©(N ~1/2), yields a parameter )\?)N that works
well for the population problem for information projection (5); this makes FairProjection have a
computational runtime of O(N log N).

Benefit of parallelization. The parallelizability of FairProjection provides significant speedup.
In Appendix B.2, we provide an ablation study comparing the speedup due to parallelization. For
the ENEM dataset (discussed next section), parallelization yields a 15-fold reduction in runtime.
In addition to the parallel advantage of FairProjection, its inherent mathematical approach is
more advantageous than gradient-based solutions. When numerically solving the dual problem (8)
(or any close variant) via gradient methods, the gradient of D™ (the convex conjugate of an f-
divergence) must be computed. However, this gradient is tractable in only a very limited number of
relevant instances of f-divergences. FairProjection tackles this intractability through having its
subroutines be informed by Lemma 1 and the discussion preceding it.

Algorithm 1 : FairProjection for solving (8).

1: Input: divergence f, predictions {p, £ h"**°(X;)}ic(n], constraints {G; £ G(X;)}ic[n), regularizer ¢,
ADMM penalty p, and initializers A and (w;);e[n]-

2: Output: AP () £ h22°(z) - p(y(z; A) 4+ ve (25 X)),
. T
3 Q5T+ 552, n GiGl
4: fort=1,2,---,t' do
5: @i + wi + pGIA i € [N]
6: v; < argmin D;Onj(v,pi) + 255 |v|f3 + af v i € [N]
vERC
7: q%%ZGi-(wi—i—vi)
i€[N]
8: A<« argmin T QL+ q"¢
LerK
9: wiewi+p~(v¢+GiT/\) 1 € [N]
10: end for




5 Numerical benchmarks

We present empirical results and show that FairProjection has competitive performance both in
terms of runtime and fairness-accuracy trade-off curves compared to benchmarks—most notably the
reductions approach in [ABD™ 18], which requires retraining. Extensive additional benchmarks and
experiment details are reported in Appendix B.

Setup. We consider three base classifiers (Base): gradient boosting (GBM), logistic regression
(LR), and random forest (RF), implemented by Scikit-learn [PVG™ 11]. For FairProjection (the
constrained optimization in (6)), we use cross-entropy (FairProjection-CE) and KL-divergence
(FairProjection-KL) as the loss function’. We consider two fairness constraints: mean equalized
odds (MEO) and statistical parity (SP) (cf. Table 2). Particularly, to measure multi-class performance,
we extend the definition of MEO as

MEO = max maxs(|TPRv:(51) — TPR;(s2)| + [FPR;(s1) — FPR;(s2)|)/2 (10)
1€) s1,82€

where TPR;(s) = P(Y = i]Y = i,S = s), and FPR;(s) = P(Y = i|]Y # i,5 = s). The
definition of multi-class statistical parity is provided in Appendix B.4.2. All values reported in this
section are from the test set with 70/30 train-test split. When benchmarking against methods tailored
to binary classification, we restrict our results to both binary Y and S since, unlike FairProjection,
competing methods cannot necessarily handle multi-class predictions and multiple groups.

Datasets. We evaluate FairProjection and all benchmarks on four datasets. We use two datasets
in the education domain: the high-school longitudinal study (HSLS) dataset [IPH" 11, JWC22] and
a novel dataset ENEM [INE20] (details in Appendix B.1). The ENEM dataset contains Brazilian
college entrance exam scores along with student demographic information and socio-economic
questionnaire answers (e.g., if they own a computer). After pre-processing, the dataset contains ~1.4
million samples with 139 features. Race was used as the group attribute .S, and Humanities exam
score is used as the label Y. The score can be quantized into an arbitrary number of classes. For
binary experiments, we quantize Y into two classes, and for multi-class, we quantize it to 5 classes.
The race feature S has 5 categories, but we binarize it into White and Asian (S = 1) and others
(S = 0). We call the entire ENEM dataset ENEM-1.4M. We also created smaller versions of the
dataset with 50k samples: ENEM-50k-2C (binary classes) and ENEM-50k-5C (5 classes).'” For
completeness, we report results on UCI Adult [Lic13] and COMPAS [ALMK16].

Benchmarks. For binary classification experiments, we compare our method with five existing
fair learning algorithms: Reduction [ABDT 18], reject-option classifier [KKZ12, Rejection],
equalized-odds [HPS 16, Eq0dds], calibrated equalized-odds [PRW " 17, CalEq0dds], and leveraging
equal opportunity [CDH 19, LevEqOpp].!! The choice of benchmarks is based on the availability
of reproducible codes. For the first four baselines, we use IBM AIF360 library [BDH T 18]. For
Reduction and Rejection, we vary the tolerance to achieve different operation points on the
fairness-accuracy trade-off curves. As Eq0dds, CalEq0dds and LevEqQOpp only allow hard equality
constraint on equalized odds, they each produce a single point on the plot (see Fig. 1). We include
the group attribute as a feature in the training set following the same benchmark procedure described
in [ABD™ 18, WRC21] for a consistent comparison. For multi-class classification experiments, we
did not find methods that can be easily compared against FairProjection and use the multi-class
extensions of mean equalized odds and statistical parity. For the sake of completeness, we modified
the codes of adversarial debiasing [ZLM18, Adversarial], and compare our method against it.
Note that Reduction [ABD ™ 18] and Adversarial [ZLM]18] are in-processing methods, and the
rest of the benchmark algorithms are post-processing methods like FairProjection. Additional
comparisons to [KCT20] are given in Appendix B.4.1.

There are four methods in Table 1 we did not include the experiments: FACT [KCT20], Identifying
[JN20], FST [WRC21], and Overlapping [YCK20], as explained in Appendix B.1.3.

“We focus on FairProjection-CE and random forest here; results for FairProjection-XL and other
models are in Appendix B.

10A datasheet (see [GMV21]) for ENEM is given in Appendix C.

"https://github.com/lucaoneto/NIPS2019_Fairness.
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Figure 1: Fairness-accuracy trade-off comparisons between FairProjection and five baselines on ENEM-
50k-2C, HSLS, Adult and COMPAS datasets. For all methods, we used random forest as a base classifier. Note
that Eq0dds, CalEqQOdds, and LevEqQOpp only produce a single accuracy-fairness trade-off point, whereas the
rest of the methods are capable of producing the accuracy-fairness trade-off curves by varying the fairness
budget « for the group fairness criteria listed in Table 2 — a smaller o corresponds to a lefter point on the
accuracy-fairness trade-off curve.

Binary classification results. We compare FairProjection with benchmarks tailored to binary
classification in terms of the MEO-accuracy trade-off on the ENEM-50k-2C, HSLS, Adult, and
COMPAS datasets in Fig. 1. Each point is obtained by averaging 10 runs with different train-test
splits. FairProjection-CE curves were obtained by varying « values (cf. Table 2). When a = 1.0,
the outputs of FairProjection-CE are equivalent to the base classifier RF.

We observe that FairProjection-CE and Reduction have the overall best and most consistent
performances. On ENEM-50k-2C and HSLS datasets, although Eq0dds achieves the best fairness,
that fairness comes at the cost of 4% accuracy drop (additively). The other four methods, on the
other hand, produce comparatively good fairness with an accuracy loss of < 1%. In particular,
FairProjection-CE has the smallest accuracy drop whilst improving MEO from 0.17 to 0.04
on HSLS. CalEqQOdds requires strict calibration requirements and yields inconsistent performance
when these requirements are not met. On ENEM-50k-2C and HSLS, LevEqOpp achieves com-
parable MEO with a slight accuracy drop, and on COMPAS, LevEqOpp performs equally well as
FairProjection-CE and Reduction. Note that with high fairness constraints (i.e., small tolerance),
the accuracy of Rejection deteriorates.

Multi-Class results. We illustrate how FairProjection performs on multi-class prediction using
HSLS and ENEM-50k-5C. For HSLS, we divided student math performance into quartiles and
generated four classes. In Figure 2, we plot fairness-accuracy trade-off of FairProjection-CE
with logistic regression and adversarial debiasing [ZLM 18, Adversarial]. As their base classifiers
are different (Adversarial is a GAN-based method), we plot accuracy difference compared to the
base classifier instead of plotting the absolute value of accuracy'?. FairProjection reduces MEO
significantly with very small loss in accuracy. While Adversarial is also able to reduce MEO with
negligible accuracy drop, it does not reduce the MEO as much as FairProjection. We show more
extensive results with multi-group and multi-class (|Y| = 5,= |S| = 5) in Appendix B.4.2.

Runtime comparisons. To demonstrate the scalability of FairProjection, in Table 3, we record
the runtime of FairProjection-CE and-KL with the five benchmarks on ENEM-1.4M-2C, which is
the biggest dataset we have. These experiments were run on a machine with AMD Ryzen 2990WX 64-
thread 32-Core CPU and NVIDIA TITAN Xp 12-GB GPU. For consistency, we used the same fairness
metric (MEO, o = 0.01), base classifier (GBM), and train/test split, and each number is the average
of 2 repeated experiments. Eq0dds, LevEqOpp, and CalEq0dds are faster than FairProjection
since they are optimized to produce one trade-off point (cf. Fig. 1). Compared to baselines that
produce full fairness-accuracy trade-off curves (i.e., Reduction and Rejection), FairProjection
has the fastest runtime. Also, the non-parallel implementation of FairProjection-KL takes 25.3
mins—parallelization attains 15x speedup (detailed results in Appendix B.2). We further compare

12Base accuracy for FairProjection = 0.336, Adversarial = 0.307. Random guessing accuracy = 0.2.
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Figure 2: Fairness-accuracy trade-off for multi-class prediction on HSLS and ENEM-50k-5C. FairProjection is
FairProjection-CE with LR base classifier.

Reduction  Rejection EqOdds LevEqOpp CalEqOdds  FairProjection (ours)
[ABD™18] [KKZ12] [HPS16] [CDH'19] [PRWT17] CE KL

Runtime 223.6 16.9 59 7.9 53 11.3 11.6

Method

Table 3: Execution time of FairProjection on the ENEM-1.4M-2C compared with five baseline methods
(time shown in minutes). Methods in bold are capable of producing a fairness-accuracy trade-oft curve. Methods
that are italicized have a uniformly superior performance. The time reported here for FairProjection includes
the time to fit the base classifiers. If base classifiers are given, the runtime of e.g. FairProjection-KL is 1.63
mins. The runtimes are consistent with small standard deviations across repeated experiments.

the runtime results for the binary HSLS, which is the second biggest dataset, with the baselines
that produce full fairness-accuracy trade-off curves. The runtimes for Reduction, Rejection and
FairProjection-CE are 81.1 sec, 9.73 sec and 4.50 sec respectively—again, FairProjection
has the fastest runtime. For a theoretical comparison between the runtime of FairProjection and
Reduction, see Appendix B.3.

6 Final remarks and limitations

We introduce a theoretically-grounded and versatile fairness intervention method, FairProjection,
and showcase its favorable performance in extensive experiments. We encourage the reader to peruse
our theoretical result in Appendix A and extensive additional numerical benchmarks in Appendix B.
FairProjection is able to correct bias for multigroup/multiclass datasets, and it enjoys a fast
runtime thanks to its parallelizability. We also evaluate our method on the ENEM dataset (see
Appendix C for a detailed description of the dataset). Our benchmarks are a step forward in moving
away from the overused COMPAS and UCI Adult datasets.

We only consider group-fairness, and it would be interesting to try to incorporate other fairness notions
(e.g., individual fairness [DHP™12]) into our formulation. We assume that hP%° is a pre-trained
accurate (and potentially unfair) classifier; one future research direction is understanding how the
accuracy of h"2 influences the performance of the projected classifier. Finally, the performance
of FairProjection is inherently constrained by data availability. Performance may degrade with
intersectional increases of the number of groups, the number of labels, and the number of fairness
constraints.
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This appendix is divided into three parts: Appendix A: Proofs of theoretical results; Appendix B:
More details on the experimental setup, additional quantitative experiments, and more qualitative
comparisons with related work; and Appendix C: A datasheet for ENEM (2020) dataset.

A Proofs of theoretical results

The theoretical details of our work are included in this appendix. We prove the strong duality stated
in Theorem 2 in Appendix A.l. Algorithm 1 is derived in Appendix A.2. The inner iterations
of Algorithm 1 are further developed in Appendices A.3—-A.4. The convergence rate result in
Theorem 3 is proved in Appendix A.5, and an extension of it (to general f-divergences) is discussed
in Appendix A.6. The performance of FairProjection for the population problem (5) is stated in
Theorem 6 in A.7 and proved there too. Explicit formulas for the G' matrix induced by the fairness
metrics in Table 2 are given in Appendices A.8 and A.9.

A.1 Proof of Theorem 2: strong duality

We use the following minimax theorem, which is a generalization of Sion’s minimax theorem.

Theorem 4 ([ET99b, Chapter VI, Prop. 2.2]). Let V and Z be two reflexive Banach spaces, and fix
two convex, closed, and non-empty subsets A C V and B C Z. Let L : AxB — R be a function such
that for each u € A the function p — L(u,p) is concave and upper semicontinuous, and for each
p € B the function u — L(u,p) is convex and lower semicontinuous. Suppose that there exist points
ug € Aand py € B such that limp,cg |jp|—oo L(to, p) = —00 and lime 4 |ju||— oo L(u, po) = 0.
Then, L has at least one saddle-point (u,p), and

L(T,P) = mi L — inf L . 11
(w,p) min ileer) (u,p) max inf, (u, p) (1)

In particular, in (11), there exists a minimizer in A of the outer minimization, and a maximizer in B
of the outer maximization.

Denote h; 2 h(X;), p; £ h"™°(X;), a; £ a(X;), and G; £ G(X;), and let the matrix Gy 2
(G’l/\/ N,--- ,GN/VN, IK) € REX(NC+K) pe a5 in the theorem statement. We may rewrite the
optimization (6) as

1
minimize ~ > Dy (hillp;) + - (Ilaill3 + 113
(hiacb)eacxrOxr  iclv] N £ s (hillps) + 71 (llaillz + 15]2)
(12)
. 1
subject to i Ag[N] Gh;+ 12 (Gia; —b) <0.

We define f at 0 by the right limit f(0) £ f(0+). Assume for now that f(0+) < oo, and we will
explain at the end of this proof how to treat the case f(0+) = co. For the optimization problem (12),
the Lagrangian L : AY x RNC x RE x Rf — R is given by

1
L (A (@ 0.X) £+ 3 Dy (hullpy) + 71 (a3 + 1613)
i€[N] 13)
+ AT (Gzhz + T2 (Giai - b)) .
With v(x;A) £ —G(x)T X as in the theorem statement, and denoting v; £ v(X;;A) = —G} A, we
may rewrite the Lagrangian as
1
L ((hi)ie[N] (@) iern - b, )\) =N > Dy (hillp) — o] hi + 7i[laill; — 0] @
i€[N] (14)
+ 7 Hb”g - TQ)\Tb.

The optimization problem (12) can be written as

inf L{(h) o1 (@) inr BA) 15
(hi,ai,b)eAc}EchRK,ie[N] Asgl;{% (( Jie[n] » (i) e ) (15)
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We check that the Lagrangian L satisfies the conditions in Theorem 4. First, any Euclidean space
RM (for M € N) is a reflexive Banach space since it is finite-dimensional. In addition, the convex
nonempty sets AY x RVC x R¥ and R are closed in their respective ambient Euclidean spaces.
By continuity and convexity of f, and linearity of L in A, we have that L satisfies all the convexity,
concavity, and semicontinuity conditions in Theorem 4. Further, fixing any h; € A¢, ¢ € [N], and

lettinga; = 0,7 € [N],and b= L (1 + % Zie[N] Gihi>, we would get that

T2

1
L <(hi)ie[N] ,(@i)ieny > b, /\) = *ATlJrﬁ > Dy (hillp)+71[b]l3 = —o0 as []A[l2 = oo.

i€[N]
(16)
In addition, choosing A = 0, we have the Lagrangian
1
L ((hi)ie[N] (@i)ieq 7b7/\) =N > Dy (hillp;) + 7illail3 + 1 [bl[3 — oo (17)
i€[N]

as |[bll2 + X_;¢nq 1Rill2 + [las]|2 = oc. Thus, we may apply the minimax result in Theorem 4 to
obtain the existence of a saddle-point of L and that

i L ( h’L i ) 1) 7b7A)
(hi,ai,b)eAggﬁcx]RK,ie[N] /\Selg% ( )zE[N] (a )1€[N]

= i f L ( h'L ; 9 1) ) b7 A .
;Iel%}jg (hi,ai,b)GAclchxRK,ie[N] ( )ZG[N] (a )le[N] )
(18)

In particular, there exists a minimizer (RS*"Y a?P"" p°P"N) e Ap x RY x R i € [N], of the
outer minimization in the left-hand side in (18), and a maximizer A* € ]Rf of the outer maximization
in the right-hand side of (18). By strict convexity of the objective function in (12) (and convexity of
the feasibility set), we obtain that the minimizer (h2*"", a?®"™ b°P"V) € Ax xRE xRE i € [N],
is unique. We show next that the optimizer A* is unique too, which we will denote by )\2 N asin
the theorem statement. We also show that, for each fixed A € Rf , there is a unique minimizer
(R}, a},b*) € Ac x RY x RX i € [N], of the inner minimization in the right-hand side of (18);
AiN

P

by strict convexity of f, this would imply that hfpt’N =h

Now, fix A € RX, and consider the inner minimization in (18). We have that

L ((hi)ie[zv] ,(@i)ieny > b A)

inf
(hi,ai,b)EAc xRE XRKJ;E[N]

B . 1 T 2 T 2 T
= eA;gachK’ie[N]N > Dy (hillp;) = vf bi + Tillasll3 — 20] a; + 7u[bl5 — 2ATD

(hs,a:,8) i€[N]
(19)
1
= inf Dy(h;||lp,) — vFh; + inf 12 = mvlfa; + inf 7|bl|2 — ATb
Ngv]h;g% s(hilp) ~ oThi + it el - molas+ inf B3 - 7
(20)
1 conj 1 2 1 2
= > =D (vi,p,) — S6lvillz = SClIAl2 1)
1€E[N]
— C T 2 1 conj
ffgugzw\Hzfﬁ Z]Df (vi, ;) 22)

ie[N
where ¢ = 72/(21;). Here, the minimizers are a) £ 72-v; and b 2 32X, and h} is the
unique probability vector in Ac for which D™ (v, p;) = D (R} ||p;) — vT h; the existence and

uniqueness of k7 is guaranteed since g — D(q||p;) — v q is lower semicontinuous and strictly
convex, and A is compact. Rewriting it in the form (22), the function

A inf L ((hi)ie[N] (@i)iciny by A) (23)

(hi,ai,b)EACXRC XRE i€[N]
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2
can be seen to be strictly concave. Indeed, the function A — HQJTV)\H is strictly convex. Also, each
2

function A D;C)nj (v;, ;) is convex as it is a pointwise supremum of linear functions: recalling
that v; = —GZ-T/\, we have the formula
D™ (vi,p;) = sup —-q"G{ X - Dy(q| p))- (24)
gcAc
Hence, the outer maximizer A* in (18) is indeed unique, which we denote by /\27 ~- Note that )\27 N 1S
the unique solution to the minimization (8), i.e.,
1 ~
Al y = argmin — Z D™ (vi, p;) + g Hg%)’

2
: (25)
xerf VAR ?

as stated by the theorem.

Since hPYN = AN the following formula for h* (for a general A € Rf ) yields the desired

functional form (7) for h°P%Y

Lemma 2 ([AAW " 20b, Lemma 4]). Let f : [0,00) — R U {oc} be a strictly convex function that
is continuously differentiable over (0, 00) and satisfying f(0) = f(0+), f(1) =0, and f'(0+) =
—oo. Let ¢ denote the inverse of f'. Fixp € AJCC and v € RC. Then, the unique minimizer of
g~ Dy(qllp) — vT'qover g € Ac is given by ¢ = p. - ¢( + ve), ¢ € [C], where v € R is the
unique number satisfying E..p[p(y + v.)] = 1.

in terms of ’\271\"

From Lemma 2, and using v(z; A} ) = —G(2)TAf y and ¢ = (f')~", we get that there exists a
uniquely defined function 7 : X x RX — R for which

B opioe(ay [6 (V@50 N) + ve(w3 0 v))] =1 (26)
for every « € X. For this 7, we know from Lemma 2 that
)‘* as *
het ™ (x) = h?d “(z)- ¢ (’Y(iU;AZ,N) + Uc(CU;)\g,N)) (27)

for every ¢ € [C] and z € X. Since h°P"N = B v we obtain formula (7) for R°P*" in terms of
A? - and the proof of Theorem 2 is complete in the case f(0+) < oc.

Finally, we note how the case f(0+) = oo is treated, so assume f(0) = f(0+) = oo. The only
difference in this case is that the Lagrangian L might attain the value co, whereas we need it to be
R-valued to apply the minimax result in Theorem 4. Nevertheless, the only way L can be infinite is if
some classifier h; has an entry equal to 0, in which case the objective function in (6) (or (12)) will
also be infinite, so such a classifier can be thrown out without affecting the optimization problem.
More precisely, we still have strict convexity and lower semicontinuity of the objective function
in (12). Thus, there is a unique minimizer hoPUN of (12). For this optimizer, there must be an 7 > 0
such that h°P"Y () > ¢,1 for every 2 € X. Thus, the optimization problem (12) remains unchanged
if A is restricted to classifiers bounded away from 0 by ;. Moreover, by the same reasoning, the
optimization problem (24) for finding D™ also remains unchanged if A is replaced by the set
of classifiers bounded away from 0 by some €5 > 0 that is independent of the X;. Hence, choosing
¢ = min(ey,e9) > 0, and replacing A¢ by A¢ £ {g € A¢; q > £1} in the above proof, we
attain the same results for the case f(0+) = oo.

Remark 3. In addition to our fairness problem formulation (6) being different from that in
[AAWT20b], we note that our proof techniques are distinct. Indeed, the proofs in [AAW "20b]
develop several techniques since they are based only on Sion’s minimax theorem, precisely because
a generalized minimax result such as Theorem 4 is inapplicable in the setup of [AAWT20b]. The
reason behind this inapplicability is that the ambient Banach space C (X, R%) is not reflexive when
X is infinite, e.g., when X = R? as is assumed in [AAW20b], whereas it is reflexive in our case as
we consider a finite set of samples X C X

A.2 Algorithm 1: derivation of the ADMM iterations

ADMM is applicable to problems taking the form

minimize F(V)+ (A
(V,AI)ERVliRK ( ) 1/)( ) (28)

subjectto AV + BA=m,
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where F' : RV — R U {oo} and ¥ : RE — R U {co} are closed proper convex functions, and
AcRY*V B e RVXK and m € RY are fixed.

We rewrite the convex problem (8) into the ADMM form (28) as follows. With the samples
iid.

X1, -, XN = Px fixed, we denote the following fixed vectors and matrices: for each ¢ € [N], set
p; £ h"°(X;) € AL = {g € Ac; g >0}, (29)
Gi 2 G(X;) e RE*C, (30)

We introduce a variable V £ (vi)ie[N] € RN (with components v; € RY), and consider the
objective functions

1 conj C
F(V) £ < > D (vip) + 5 IV, 31)
1€[N]
YO 2 T () + 5 N2 ()
Then, setting'?
1 1

our finite-sample problem (8) takes the ADMM form (28).

In addition, this reparametrization allows us to parallelize the ADMM iterations, which we briefly
review next. One starts with forming the augmented Lagrangian for problem (28), L, : RY x RE x
RY — R U {oco}, where p > 0 is a fixed penalty parameter and U € RY denotes a dual variable, by

L,V \U) 2 F(V)+ ¢\ + U” (AV + BA —m) + g |AV + BA—m)?. (34)

The ADMM iterations then repeatedly update the triplet after the ¢-th iteration (V(t), AO U (t)) into
a triplet (VD X+ U+ that is given by

VD € argmin LP(V,/\(f’), U, (35)
VERY

A ¢ argmin LP(V(H'l),/\, U(t)), (36)
A€RV

U U 4 p- (AVED 4 B (37)

We next instantiate the ADMM iterations to our problem, and we note that we will consider the scaled
dual variable W = v/ NU.

In our case, the augmented Lagrangian splits into non-interacting components along the v;. This
splitting allows parallelizability of the V -update step, which is the most computationally intensive
step. Consider a conforming decomposition U = (u;);c[n) for u; € R, and let W = /NU. With
some algebra, one can show that the ADMM iterations for the ADMM problem specified by (31)—(33)
are expressible by'#

oY — argmin D;onj (v, p;) + R (w), i€ [N], (38)
veERC

AEFD — argmin ATQM 4+ g7, (39)
AeR¥

w§t+1) _ wgt) s ('Uz(‘tH) n G;TA(tJrl)) : i€ [N], (40)

3The prefactor 1/+/N is unnecessary since m = 0, but we introduce it to simplify the ensuing expressions.
“Note also that in these specific ADMM iterations, unlike in the general ADMM iterations, we write
“= argmin” as opposed to “€ argmin” since strict convexity and coercivity guarantee that a unique minimizer

T
exists (see [CST17] for a case where argmin is empty). Also, we write here q(t)T instead of (q(”) for
readability.
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where RZ(-t) : RY — R is the quadratic form

+ T
RO () 2 L2 ol3 4 (wl? +pGIAO) 0, @)

and the fixed matrix @ € RE*X and vectors q(t) € RX are given by

I +5n Z G,GT (42)
ZG[N]
1
®a Ll ) (D)
g2~ %ﬂ G, ( + ) 43)

Note that both the first (38) and last (40) steps can be carried out for each sample i € [N] in parallel.

A.3 The inner iterations: minimizing the convex conjugate of f-divergence

Only updating the primal-variable v; in Algorithm 1, i.e., solving

m]%n Dcom(v p) +&|v]|2 + a’v (44)
ve

for fixed (p,&,a) € AL x (0,00) x RY, is a nonstandard task. We propose in this section two
approaches to execute this step, which aim at re-expressing the required minimization as either a
fixed-point or a root-finding problem. In more detail, if one has access to an explicit formula for the

gradient of D;Onj, then one can transform (44) into a fixed-point equation. This case applies for the
KL-divergence, for which VD™ is the softmax function (Appendix A.3.1). Furthermore, for the
convergence of the fixed-point iterations, we derive an improved Lipschitz constant for the softmax
function in Appendix A.4. On the other hand, if one does not have a tractable formula for VD;OnJ ,

we propose the reduction provided in Lemma 1, whose proof is provided in Appendix A.3.2. We
specialize the reduction provided by Lemma 1 to the cross-entropy case in Appendix A.3.3. Finally,

we include in Appendix A.3.4 a general formula for VD;Onj that can be used for the v;-update step

for a general f-divergence, and we also utilize it in Appendices A.5—A.7 to prove the convergence
rate of Algorithm 1 stated in Theorems 3-6.

A.3.1 Primal update for KL-divergence

Consider the case when the f-divergence of choice is the KL-divergence, i.e., f(t) = tlogt. Then, the
convex conjugate D ) is given by the log-sum-exp function [DV75], namely, for (p, v) € Ag xR¢

we have
D™ (v, p) =log Y pee®. (45)
ce[C]

Thus, the first step in a given ADMM iteration, as in (38) (see also the beginning of the for-loop in
Algorithm 1), amounts to solving

1 cvc 46
min Ogcez[;]p +&|v)3 +a"v (46)

for & & %"C > 0 and some fixed vectors (p,a) € Ag x RY; see (29), (38) and (41) for explicit
expressions. The problem (46) is strictly convex. Further, we may recast this problem, via introducing
the variable z € R by z. £ v, + log p,, as

1 ze bl z, 47
min ogcez[;]e +¢|z)5 + 47)

where b, = a. — 2 logp, is fixed. To solve this latter problem, it suffices to find a zero of the
gradient, which is given by

V. | log Z e+ &z 4+ b7z | =o(z) +262+0b (48)
ce[C]
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conj

Algorithm 2 : argmin Dy (v, p) + £||[v||3 + a™v
veERC

Input: £ > 0,p € A, a,v € RC.

Ze < Ve + log pe c € [C]
bc <~ Qe — 25 logpc S [C]
repeat

z ¢ —5¢ (0(2) + b)

until convergence

Output: v, £ 2, — logp,. ce|[C]

z
e“c’

where o : R — A, denotes the softmax function o(z) £ (E

720 . Thus, we arrive at
celc1 ¢ S el

the fixed-point problem 6(z) = z for the function

0(z) = —% (o(z) +b). (49)

We solve §(z) = z using a fixed-point-iteration method, i.e., with some initial z(, we iteratively
compute the compositions #(™)(z,) for m € N. This procedure is summarized in Algorithm 2.

The exponentially-fast convergence of Algorithm 2 is guaranteed in view of Lipschitzness of 6 as
defined in (49). Indeed, it is known that the softmax function is 1-Lipschitz (see, e.g., [GP17, Prop.
41); we improve this Lipschitz constant to 1/2 in Appendix A.4. This improvement yields a better
guarantee on the convergence speed of FairProjection. Indeed, as a lower value of the ADMM
penalty p correlates with a faster convergence, lowering the Lipschitz constant of the softmax function
allows us to speed up FairProjection by choosing p > % — (instead of p > 1 — (.

A.3.2 Proof of Lemma 1: primal update for general f-divergences

The lemma follows by the following sequence of steps:

. Dconj , 2 T Q : T — D T 2 50
i D™ (v, p) +£|lvllz +a7v = min max 7w — Dy(ql[p) +a”v + vl (50)
an . T T 2
= - D 51
Joax min " v rl@llp) +a v+{|vlz 6D
am 1 2
= -D - 52
Jnax —Dy(q|lp) 45IICHrqHz (52)
1
—  min D 1 2
min Ds(alp)+ g la+ alf 3
: 1 2 T
= —min supD¢(q|lp)+ =lla+q|5+60-(17qg—1
iy sup r(allp) 4§|| 12 ( )
(54)
av) . 1 2 T
= —sup min D¢(q||p)+ —|la+4ql|5+0-(1"q—1
sup iy (gl p) 45\\ 12 ( )
(55)
) . qe 1 2
= —sup—0 + E min p.f () + 7(0«: +QC) + g,
9eR cci %20 Pe 4
(56)

where (I) holds by definition of D;Onj (see (3)), (II) by Sion’s minimax theorem, (III) since the inner
minimization occurs at v = —i (g + a), (IV) by generalized minimax theorems [see, e.g., Chap-

ter VI, Proposition 2.2 in ET99a] (restated as Theorem 4 herein for convenience), and (V) by
separability.
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A.3.3 Primal update for cross-entropy

In the cross-entropy (CE) case, i.e., f(t) = —logt, instead of using an explicit formula for DEem
(which would yield unwieldy expressions), we utilize the reduction shown in Lemma 1. Thus, we
have the equality

Do — _sup—6 D2 +0q.. (57
iy DY (w.p)-+€[ol +a”v = ~sup - +%5mnpcf< )+ felacta +0ge. 57

As per (57), we focus next on solving the inner sing]e—variable minimization

mln —plogq+ — (a +q)* + bq. (58)
a>

4¢
It is easily seen that the solution to this minimization is the unique point making the objective’s
derivative vanish, i.e., it is ¢* € (0, co) for which

_7+E+9+7§ 0. (59)

This is easily solvable as a quadratic, yielding

q*:\/(9§+g)2+2p§—<9§+;). (60)

Therefore, solving (57) amounts to finding the constant # € R that yields a probability vector

q € Ac, where
qcé\/(95+§)2+zpce—(ef+‘;c). (61)

:—1+Z\/z+ +2pc€—(z+%)7 (62)

Consider the function

ce[C]
so we simply are looking for a root of g (then set § = z/¢ and v = —%(q + a)). This can be
efficiently accomplished via Newton’s method. Namely, we compute

2z + a.
g(z)=-C+ - : (63)
ce[C] \/(z +%)7 + 2pcg
then, starting from 2(0) we form the sequence
()
L) a ) 9 (=) . (64)

This procedure is summarized in Algorithm 3.

A.3.4 On the gradient of the convex conjugate of f-divergence

The following general result on the differentiability of D;Onj can be used to carry out the v;-update
step for a general f-divergence, and it will also be useful in Appendices A.5—-A.7 for proving the
convergence rate of Algorithm 1 as stated in Theorems 3-6.

Lemma 3. Suppose f : (0,00) — R is strictly convex. For any fixed p € Ag, the function
v D;ionj(v7 p) is differentiable, and its gradient is given by

VoD (v,p) = 7™ (v, p) € Ac, (65)
where
q$" (v, p) £ argmin Dy(q||p) —v"q. (66)
qEAC
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conj

Algorithm 3 : argmin D" (v, p) + £||v||3 + a™v
vERC

Input: £ > 0,2 € R, pc Af,a € RC.

repeat
2
o) -1+ (o2 e (4 %)
ce[C]
2
J(2)  —C+ SR
ce[C] \/(z + %)+ 2pc€

9(z)

Z 4 zZ— g'(z)

until convergence

Looa 1 Qe \/( ac)Q
Output: v, = 5 72— z+ 5 + 2pc€

Proof. From [Roc09, Proposition 11.3], since g — Dy (q || p) is a lower semicontinuous proper
convex function, the subgradient of its convex conjugate v — D™ (v, p) is given by

9y D™ (v, p) = argmin Dy (q || p) — vlq. (67)

qeAc
Recall also that a function is differentiable at a point if and only if its subgradient there consists of a
singleton [BFG87]. Thus, it only remains to show that the right-hand side in (67) is a singleton. For
this, we note that ¢ — Dy(q || p) — v”q is lower semicontinuous and strictly convex, and A¢ is
compact. O

A.4 1>-Lipschitzness of the Softmax Function

As stated in Section 4 and Appendix A.3.1, the convergence speed of the inner iteration (the v; update
step) of FairProjection can be guaranteed to be faster if the Lipschitz constant of the softmax
function is lowered from 1 (which is proved in [GP17, Prop. 4]). By Lipschitzness here, we mean
£o-norm Lipschitzness. We prove the following proposition in this appendix.

Proposition 1. For any n € N, the softmax function o(z) = (Zfzjezi ) ] is 1-Lipschitz.
i=1 j€ln

We will need the following result.
Lemma 4 (Theorem 2.1.6 in [Nes04]). A twice continuously differentiable function f : R™ — R is

convex and has an L-Lipschitz continuous gradient if and only if its Hessian is positive semidefinite
with maximal eigenvalue at most L.

Since the softmax function is the gradient of the log-sum-exp function, and since the spectral norm is
upper bounded by the Frobenius norm, it suffices to upper bound the Frobenius norm of the Jacobian
of o by 1/2. Suppose that o is operating on n symbols. Consider the sum of powers functions
sp(x) = > ien] x¥ for £ € R™. For any v € R", denoting = ¢ (v), the square of the Frobenius
norm of the Jacobian of ¢ at v is given by

w(x) £ sy(x)? + so(x) — 253(x). (68)
We show that w(z) < 1 forany n € Nand @ € A,,.

The approach we take is via reduction to the case n < 3, which one can directly verify. Namely,
assuming, without loss of generality, that 21 < x9 < --- < x;,, we show that if 21 + x5 < 1/2 then
w(y) > w(x) where y € A,,_ is given by y = (1 + 2,3, -+ , xy). Note that if n > 4 then we
must have x1 + xo < 1/2, because x1 + z2 < x3 + x4 and x1 + x3 + 23 + x4 < 1. Thus, we will
have reduced the problem from an n > 4 to n — 1, which iteratively reduces the problem to n < 3.
Fix n > 4.
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Denote z = (z3, -, Zn). A direct computation yields that
w(y) —w(x) = 2z122 - (252(2) + g(71,72)) (69)
with the quadratic
g(a,b) £ 2a* + 2b* + 2ab — 3a — 3b + 1. (70)

By assumption, ; > max(zy,x3) for eachi > 3,50 2s2(2) > (n — 2)2? + (n — 2)a3 > 22 + 23.
Then,
w(y) — w(x) > 2x129 - h(x1, x2) (71)
with
h(a,b) £ 3a® + 3b* + 2ab — 3a — 3b + 1. (72)
Now, we show that h is nonnegative for every a,b > 0 with a + b < 1/2. With ¢ = a + b, we may

write
h(a,b) = 3c* — (3 + 4a)c + 4a® + 1. (73)

This quadratic in ¢ has its vertex at ¢pin = (3 +4a)/6. Asa > 0, cpin > 1/2. Asa+b < 1/2, we
see that the minimum of A is attained for ¢ = 1/2. Substituting b = 1/2 — a, we obtain

1\2
h(a.b) = <2a _ 2) , (74)
which is nonnegative, as desired.

A.5 Convergence rate of Algorithm 1: proof of Theorem 3

We recall a general result on the R-linear convergence rate for ADMM, which corresponds to case 1 in
scenario 1 in [DY 16]; see Tables 1 and 2 therein. Recall that a sequence {z()};cy is said to converge
R-linearly to 2* if there is a constant € (0, 1) and a sequence {3}, such that || 2" —z*|| < B
and sup, (841 /")) < #. In particular, one has exponentially small errors:

[z® — 2| < BO - gt (75)

The following theorem is used in our proof of Theorem 3.

Theorem 5 ([DY16]). Suppose that problem (28) has a saddle point, F' is strongly convex and
differentiable with Lipschitz-continuous gradient, A has full row-rank, and B has full column-rank.
Then, the ADMM iterations (35)—(37) converge R-linearly to a global optimizer.

In Appendix A.2, we show that the dual (8) of our fairness optimization problem (6) can be written
in the ADMM general form (28) with the choices

1 conj (: 2
F(V) =5 22 DY wip) + 3 VI3 (76)
1€E[N]
and ) )
A=——Inc, B= ——(G)%n1. 77
\/N NC \/N( )zG[N] (77)

Recall from Theorem 2 (see also the proof in Appendix A.1) that our problem (8) has a saddle
point. Further, the function F' : RV¢ — R is (-strongly convex and differentiable. Indeed, each

v cho“j(v,pi) is convex, and the term %HVH% is ¢-strongly convex, so F is ¢-strongly convex
too. In addition, by the formula for VD;Onj in Lemma 3, the gradient of F is

1 conj
VE(V) = <af (V) + V., (78)
where _ .
q(}onj(v) A (q;onj (vi’pi))ie[N] , (79)

with ¢ (v;) as defined in (66).
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In the KL-divergence case, i.e., f(¢) = ¢ logt, the gradient of D;‘mj is given by the softmax function
(see Appendix A.3.1)

onj cevC
g7 (v,p) =0 (v +logp) = <Zp> : (80)
ce[c)Peree ce[C]
Therefore, we have that
1
VE(V) = N (0 (vi +1ogp;));en +CV- (81)

By Proposition 1, the softmax function o is %-Lipschitz. Hence, VF'is (ﬁ +¢ ) -Lipschitz.

Therefore, the general ADMM convergence rate in Theorem 5 yields that there is a constant » > 0
such that

Ao~ xen], <50e 82

where 3 £

/\20])\, — )\Z N H . (Although Theorem 5 guarantees exponentially-fast convergence of
' 2

/\g)N to a global optimizer, recall that A7 is the unique optimizer of (8), as Theorem 2 shows.)

Finally, it remains to bound the distance between h°P*"" and the output classifier h") after the ¢-th
iteration of Algorithm 1. Note that ¢(u) = (')~ (u) = €“~1, so v may be obtained explicitly, and
equation (7) becomes

hlé),ase(x) . evcl(w;)\Z,N)

- (33)
T eicg M0 (@) - ")

hz,pt’N(x) =

Thus, using A(*) £ )\ét)N in place of Ay, we obtain that the {-th classifier obtained by Algorithm 1 is

hb,asc (.f) . eV’ (@A)
c

(t) _
he' (x) = > ey R () - ere A (84)
Therefore, we have the ratios
WD (@) ey hee(@)e =) i \
hopt,N(I) = > o hbaSC(g;)e”c(a”%M”) - exp (vc/ ($;/\( )) — Uy ($3)‘4,N)> . (85)
c ce c

By definition of v, v(z;A) = —G(x)T . Thus, we obtain from (82) and boundedness of G that

0@ A0) vl xg v)||_ = e, (36)
where the implicit constant is independent of x. Applying (86) in (85), and noting that ete™ ™ =
14+ e~ as ¢ — 0o, we conclude that
¢ 1= e, (87)
WP () ]

uniformly in z. We may rewrite (87) as
RO(@) = b N (@) - (14720, (88)

which is the desired convergence rate in the theorem statement, and the proof is complete.

A.6 Extension of Theorem 3

Though Theorem 3 is shown for the KL-divergence, the proof directly extends to general f-

divergences satisfying Assumption 1. In fact, Lipschitz continuity of the gradient of D&C’Lnj is

the only specific property that we apply to derive the KL-divergence case. For a general f-divergence,
Lipschitz continuity of VD’”™ may be derived as follows. Combining Lemmas 2-3 reveals the for-

mula V,,D;ionj (v,p) = (P - ¢ (V(V) + ve)) e Where ¢ = (f)~! and 7(v) is uniquely defined

25



by Ecup [6(7(v) +v.)] = 1, with p € A, fixed. Since ¢’ = 1/(f" o ¢), we have that ¢ is locally
Lipschitz. From the proof of Theorem 5 in [AAW "20b], we know that v + ~(v) is locally Lipschitz.
Thus, v — V,,D;ionj (v, p) is locally Lipschitz. Further, A — VvD;Onj(v(x;)\),p) is then also
locally Lipschitz. Note that we may restrict A a priori to be within some finite ball (see Lemma 5).
Thus, if, e.g., X is compactly-supported, we would obtain the desired Lipschitzness properties of the
gradient of D;onj, and the proof of Theorem 3 carries through for Dy in place of Dy.

A.7 Convergence rate to the population problem

The following result shows, roughly, that the parameter )\Si,o_gl]/\;) y Obtainable from

FairProjection performs well for the population problem for information projection (5).

Theorem 6. Suppose Assumption 1 holds, let X = R?, and consider the KL-divergence case. Then,
choosing { = © (N71/2) and t = Q(log N') we obtain for any § € (0, 1) that (see (5))

Pr {Ex (D& (v (X5A8y ) RPe(X))] > D"+ 0 (j]v)} <. (89)

The proof is divided in this appendix into several lemmas. We note first that, in the course of the
proof of Theorems 1 and 2 in [AAW20a], it was shown that at least one minimizer A* of (5)
exists. Further, any such minimizer satisfies the following bound. Denote the constraint function by
u(h) £ Ep, [Gh]. Throughout this proof, we set X' = R4,

Lemma 5. Suppose Assumption 1 holds, and fix a strictly feasible classifier h € H, i.e., u(h) < 0.
Every minimizer X* € Rf of (5) must satisfy the inequality
Df (h H hbase | PX)

in — pi(h
Jnin pii(h)

A [y < Amax = (90)

We note that for the fairness metrics specified in Table 2, one valid choice of a strictly feasible h

(i.e., one for which p(h) < 0) is the uniform classifier h(z) = %1. In any case, we have that

Amax < 00 since both h and h"** are assumed to belong to H and f is continuous over (0, c0); e.g.,

one bound on Apax 18 Amax < max,,<¢<ns f(t)/ minge(x) —px(h) where m = inf. , he(z) and

M = 1/ inf, . h22¢(z). We will also need the following constants for the convergence analysis:

gmean 2 E [IG(X)3] o1
Gmax 2 sup |G (@)]]3 . (92)
rEX

Clearly, gimean < gmax- By the boundedness of G in the second item in Assumption 1, gy,ay is finite.

Remark 4. Although the results in this paper are stated to hold under Assumption 1, we note that those
conditions do not essentially impose any restriction on carrying our FairProjection algorithm.
Indeed, we focus in this paper on the CE and KL cases, for which f satisfies the imposed conditions.
We also note that only boundedness of G is required for Theorem 2, which is true for the fairness
metrics in Table 2 in non-degenerate cases (e.g., no empty groups). The condition on pPase being
bounded away from zero can be made to hold by perturbing it if necessary with negligible noise. The

condition on hP*° being continuous is automatically satisfied if its domain is a finite set (as is the
case for Theorem 2). Finally, the strict feasibility condition is verified by the uniform classifier.

Now, consider a form of /5 regularization of (5):

iy B {D;‘mj (U(X;)\),hbase(X)) v g Hé(X)T,\Hj 93)

where G(z) £ (G(xz), I ) € REX(E+C) We show now that there is a unique minimizer A7 of (93).

Lemma 6. Under Assumption 1, there exists a unique minimizer )\Z of the regularized problem (93).
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Proof. Denote the function A : R — R by
A conj base C ~ T 2
AN 2 E | D (X5 0), hP4(X) ) + > HG(X) ,\H2 . (94)

That the range of A falls within R follows by Assumption 1, since then the function z
DM (v(a; A), hP#°(z)) is Px-integrable. We will show that A is lower semicontinuous and
(-strongly convex.

By Lemma 3, v chonj (v, p) is differentiable for any fixed p € AY, implying that it is also

continuous. Thus, A — D;‘)nj (v(x; A), h"*°(z)) is continuous for each x € X. Hence, by Fatou’s
lemma and boundedness of G, A is lower semicontinuous.

Next, to show strong convexity, we note that A — D;Onj (v(x; A), hP*°(2)) is convex for each

x € X. Indeed, this function is the supremum of affine functions. Further, the regularization term is
(-strongly convex, as its Hessian is given by

¢ (IE {G(X)é(X)T} + I) : 95)
which is positive definite with minimal eigenvalue at least (.

Now, for each fixed § > 0, consider the compact set Ay = {X € RE ; ||A[|3 < 6}. By what
we have shown thus far, there is a unique minimizer Ay of A over Ay. By strong convexity, if A
has a global minimizer then it is unique. We will show that Ay is a global minimizer of A, where
6 = 2(A(0) — D*)/¢. Suppose that 0 is not a global minimzer. Fix A € R such that A(0) > A(X).
Then,

A(0) > A\) > D* + g (E [HG(X)TAHﬂ + ||A||§) > D* + g A2 (96)

Thus, |A|3 < 6. This implies that Ay is a global minimizer of A, hence it is the unique global
minimizer of A. The proof of the lemma is thus complete.

The following bound shows that )\Z is within O(¢) of achieving D* (see (5)).

Lemma 7. Suppose Assumption 1 holds, fix ( > 0, and denote the unique solution and the optimal
objective value of (93) by Xg and D7, respectively. We have the bounds

E [D;Oni (U(X;,\z), hbase(X)ﬂ < DE < D"+l - G, 97)

where we define the constant 6req 222 (14 Gmean) /2.

Proof. The first bound is trivial. Using Lemma 5, we may fix a A* € R with [|A*||; < Apax such
that A* achieves D*. By definition of D,

Df<E [D;Om‘ (v(X;A*), hbase(X)) n g Hé(X)T,\* j < D* 4 O - €,

where the last inequality follows since for the 2-matrix norm, || M ||z < || M||2||A||2 and || M™||5 =
[ M. O

Next, we derive a sample-complexity bound for the finite-sample problem (8) via generalizing the
proofs of Theorem 3 in [AAW *20a] and Theorem 13.2 in [HR19].

Lemma 8. Suppose Assumption 1 holds, and let A\ ax and gmax be as defined in Lemma 5 and
equation (92). For any 6 € (0,1), with )‘Z,N denoting the unique solution to (8), it holds with
probability at least 1 — ¢ that

2gmax ° (1 + C ° )\max)2 (98)

Ex [DF™ (v(X: 0 ), hP™e(X))] < D + 3CN
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Proof. Let A = {X € RE ; ||A|l1 < Amax}, and consider the function £ : A x X — R defined by

L\, x) £ peeni (v(x')\) hbase(m)) + g HG’(&C)7 /\HZ. (99)
’ ! T 2 2
Note that the regularized problem (93) can be written as
Df & min E[¢(X X)], 100
¢ Aenlaﬁj [ ( )] (100)

and the finite-sample version of it (8) can also be written as

1
Df y & min — (N, X5). 101
En = oy E (A, Xi) (101)
1€[N]

We show first that, for each fixed x € X, the function A — ¢(X, ) is {-strongly convex over A. The
gradient of the regularization term is (G (z)T X, and its Hessian is given by

v2 g Hé(x)T,\Hz — (G(2)G ()T + (k. (102)

Further, the function A D;Onj (v(x; X), hP*°(2)) is convex as it is a pointwise supremum of linear
functions. Indeed, for any p € A, recalling that v(x; X) = —G(z)T X, we have the formula

D(;C)nj ('U(x’ A)’p) = sup —qTG(I)TA - Df(q || p) (103)
. qeEAC

Next, we show Lipschitzness of A — £(X,z). For any fixed v € R” and p € AJ, we have the
gradient (see Lemma 3)

VoD (v,p) = ¢ (v) € Ag, (104)
where
q*"(v) £ argmin D¢ (q||p) — v"q. (105)
qeEAC
Thus, we have the gradient
VADS™ (v X), B (0)) = ~G(a)g™™ (v(wi ). (106)
Hence, the gradient of A — ¢(A, z) is
Val(h, ) = —G(2)g® (v(z;N)) + CG(2)T A, (107)
which therefore satisfies the bound
VAL, )y < IG(@)]l2 (14 ¢ - Amax) - (108)
Therefore, each A — ((A, x) is A-Lipschitz with
A=(14¢" Amax) sug |G (2)||2- (109)
S

Thus, by Theorem 13.1 in [HR19], with probability 1 — § we have the bound

Ex [ (A: N, X)| < DE 247 110
x [N X)) < <t SN (110)
With probability one, we have the bound

Ex [DF™ (v (X5ALx) hP(X))] < Bx [ (A, X)] (111)
This completes the proof of the lemma. O
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Now, we are ready to finish the proof of Theorem 6 by specializing the above lemmas to the KL-
divergence case. So, we set f(t) = tlogt for the rest of the proof. By Lemmas 7-8, we have with
probability 1 — §

2gmax ‘ (1 + C : )\max)Q
5CN

Ey {D;Oni (v(X; Ao n)s hb“e(X))] < D* 4 Oy €+ (112)

Thus, by Lipschitzness (Proposition 1) and (82)

2gmax : (]- + C : )‘max)z
5CN

Ex [DF (X200, B ()] < D*+%¢m €7+ heg C+

(113)
Here, we are choosing the constant 3 independently of NV (as the optimal values of A are bounded),

and r of order (as can be guaranteed from Corollary 3.1 and Theorem 3.4 in [DY 16]).

Choose ¢ = @(N_l/z). Collecting the constants in (113), we obtain that

Ey [chonj ('U(X;Aétjv),hbase(X)>:| < D' 4= \/m ety 5\F

for some constant / that is completely determined by 8,eg, gmax, and Amax. This bound can be further
upper bounded by D* + O(N ~'/2) by choosing t > 3-log N = ©(log N), thereby completing the
proof of the theorem.

(114)

A.8 Linearized multi-class group fairness criteria
We include, for completeness, how the group-fairness metrics in Table 2 linearize, i.e., written in the
form:
p(h) = Ep, [G(X)R(X)] < 0. (115)
We assume that we have in hand a well-calibrated classifier that approximates Py g|x, i.e., that
predicts both group membership .S and the true label Y from input variables X. This classifier can be
directly marginalized into the following models:
« alabel classifier h°*° : X — A that predicts true label from input variables,
h(2) & (Pyix=o(1), -+ , Pyjx=(C)) for @ € X, (116)

 a group membership classifier s : X x ) — A4 that uses input and output variables to
predict group membership,

S({L‘7y) £ (‘PS|X,Y(1 | :E>y>7 T 7PS\X,Y(A | :E7y)) for (SL’,y) € X X y7 (117)

Welet ey, - - -, ec denote the standard basis vectors of R®. We suppose that the support of the group
attribute S is S = [A].

Statistical parity. This fairness metric measures whether the predicted outcome Y is independent
of the group attribute S. For statistical parity, the G(z) matrix has rows:

C  salz,c)hPae (2
<(_1)6Zc=1 aésa(a))hc ( ) _ (a+(_1)6)> €.

There are K = 2AC rows since (9, a, ') € {0,1} x [A] x [C]. See Appendix A.9 for a full derivation.

Equalized odds. This fairness metric requires the predicted outcome Y and the group attribute S to
be independent conditioned on the true label Y. When the classification task is binary, the equalized
odds becomes the equality of false positive rate and false negative rate over all groups. For equalized
odds, the G((z) matrix has rows:

Sar(z,C E’ase T ase
<(1)61(Dg|y)_h(a’)() — (a+(=1)°) rE (x)) €.

There are K = 2AC? rows.
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Overall accuracy equality. This fairness metric requires the accuracy of the predictive model to be
the same across all group groups. The G(x) matrix has rows:
(1) () © B2 (a)
Ps (a)
where © represents the element-wise product. There are K = 2A rows.

_ (a+ (71)6) .hbase(x)7

A.9 A detailed derivation of linearization of statistical parity
We derive the linearized formula for Statistical Parity given in Appendix A.8. Recall that a prediction
Y satisfies statistical parity (SP) if it is independent of the group attribute .S, i.e., Py g_a () =Pp(c)

for every (a,¢') € [A] x [C]. A relaxed notion of SP is ‘approximate independence’ of ¥ and
S: |P§,|S:a(c’)/Pf,(c’) — 1] <€ « for some small @ > 0 and all (a,c’) € [A4] x [C]. Using

P‘?I s=Pys / Ps and rearranging, the above inequality is equivalent to
+Pp S(c’, a)/Ps(a) — (o 1)Pf,(c’) <0.
We expand via conditioning ¥ on X, and S on (X,Y). Recall that hy (z) = ?|X:m(c’) and

5q(2,¢) = Pg|x=g,y=c(a) by definition, and that we have a Markov chain (Y, $)-X-Y'; hence,
Py (c) = Elhe (X)] and Py (c,a) = E[}_ ¢/ 5a(X, c)hb25¢(X)h (X)]. Thus, we can write
approximate SP as

E||£Ps(a)™ ) sa(X,0)h™(X) = (a£1) | he(X)| <0.
ce[C]
We denote h(x) = (hi(z), ha(z), - ,he(z))T, and for (§,a,¢’) € {0,1} x [A] x [C], denote

g+ ()= [ (~1)°Ps(a)™" Y salz,)h™(2) = (a+ (-1)°) | ew,
ce[C]
where {e. } (¢ is the standard basis of RC. Then, for each pair (,a, ) € {0,1} x [4] x [C],
we have a linear constraint E[g(®®<)(X)Th(X)] < 0. Since there are K = 2AC possible triplets
(6, a,c’), we convert the SP constraint into K linear constraints.

B Additional experiments and more details on the experimental setup

B.1 Numerical Benchmark Details
B.1.1 Datasets

The HSLS dataset is collected from 23,000+ participants across 944 high schools in the USA, and it
includes thousands of features such as student demographic information, school information, and
students’ academic performance across several years. We preprocessed the dataset (e.g., dropping
rows with a significant number of missing entries, performing k-NN imputation, normalization), and
the number of samples reduced to 14,509.

The ENEM dataset, collected from the 2020 Brazilian high school national exam and made available
by the Brazilian Government [INE20], is comprised of student demographic information, socio-
economic questionnaire answers (e.g., parents education level, if they own a computer) and exam
scores. We preprocess the dataset by removing missing values, repeated exam takers, and students
taking the exam before graduation (“treineiros”) and obtain ~1.4 million samples with 138 features.

B.1.2 Hyperparameters

For logistic regression and gradient boosting, we use the default parameters given by Scikit-learn. For
random forest, we set the number of trees and the minimum number of samples per leaf to 10. For all
classifiers, we fixed the random state to 42. When running FairProjection (cf. Algorithm 1), we
set the hyperparameters ¢ = 1/v/N (see Theorem 6) and p = 2 (see Appendix A.3.1), where N is
the number of samples.
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B.1.3 Benchmark Methods
For binary classification, we compare with six different benchmark methods:

* EqOdds [HPS16]: We use AIF360 implementation of EqOddsPostprocessing and we use
50% of the test set as a validation set, i.e., 70% training set, 15% validation set, 15% test set.

e CalEqOdds [PRW ™ 17]: We use AIF360 implementation of CalibratedEqOddsPostpro-
cessing and we use 50% of the test set as a validation set, i.e., 70% training set, 15%
validation set, 15% test set.

¢ Reduction [ABD™18]: We use AIF360 implementation of Exponentiat-
edGradientReduction, and we use 10 different epsilon values as follows:
[0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5, 1, 2]. We used EqualizedOdds constraint for
MEO experiments and DemographicParity for statistical parity experiments.

* Rejection [KKZ12]: We use AIF360 implementation of RejectOptionClassification. We
use the default parameters except metric_ub and metric_lb, namely, low_class_thresh =
0.01, high_class_thresh = 0.99, num_class_thresh = 100, num_ROC_margin = 50.
We set the values metric_ub = e and metric_Ilb = —e to obtain trade-off curves. Epsilon
values we used are: [0.001, 0.005, 0.01,0.02,0.05,0.1,0.2,0.5, 1, 2].

* LevEqOpp [CDH™19]: We used the code provided in the Github repo, originally pro-
grammed in R. We converted it into Python, and verified that the Python version achieved
similar accuracy/fairness performance to their R version on UCI Adult dataset. We follow
the same hyperparameters setup in [CDH " 19].

The following four methods, despite being mentioned in Table 1, are not included in the experiments:

* FACT [KCT20]: We used the code provided on the Github repo. We did not include the
results in the main text as we found that:

(i) This method is not directly comparable because they find post-processing parameters
on the entire test set and apply them on the test set. This is different from all other
methods we are comparing including our method, which use training set or a separate
validation set to fit the post-processing mechanism. For this reason, FACT often has a
point that lies above all other curves on the accuracy-fairness plot. However, this is not
a fair comparison. We include the results of FACT in the COMPAS plots for the sake
of demonstration.

(ii)) We found the results produced by this method inconsistent. Partial reason is due
to the problem of finding mixing rates—probability of flipping Y =1t00 G.e.,
P(Y = 0|Y = 1)) and vice-versa—which have to be between 0 and 1. But there are
cases where these values lie outside [0, 1], which leads to erroneous and inconsistent
results.

For the results we present in the COMPAS plots, we used 20 epsilon values from 1 to
10—, equidistant in log space. We used 10 different train/test splits as we do in all other
experiments. If certain splits does not produce a feasible solution, we drop those results. If
none of the 10 splits produce a feasible solution, we drop the epsilon value. At the end, we
had 19 epsilon values.

* Identifying [JN20]: Their optimization formulation is a special case of our formulation when
f-divergence is KL divergence, but their algorithm requires retraining a classifier multiple
times to solve the optimization problem, which results in a much slower runtime compared
to ours (see Lines 1037-1046 in Appendix B.4). Nevertheless, we will add experiments for
binary classification using [JN20] in the final version.

e FST [WRC20, WRC21]: Codes are not available publicly.

* Overlapping [YCK20]: We did not include this method for binary classification experiments
as it reduces to the Reductions [ABD+18] approach for the binary class, binary protected
group case. We could not benchmark for multi-class experiments with the code available
online as it was assuming binary class (even though multiple protected groups).

For multi-class comparison, we compare with Adversarial [ZLM18]. In theory, the adversarial
debiasing method is applicable to multi-class labels and groups, but its AIF360 implementation works
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only for binary labels and binary groups. We adapted their implementation to work on multi-class
labels by changing the last layer of the classifier model from one-neuron sigmoid activation to
multi-neuron soft-max activation. We varied adversary_loss_weight to obtain a trade-off curve,
values taken from [0.001,0.01,0.1,0.2,0.35,0.5, 0.75]. For all other parameters, we used the default
values: num_epochs = 50, batch_size = 128, classifier_num_hidden_units = 200.

There are some methods that are relevant to our work but we could not benchmark in our experiments
due to the lack of publicly available codes, including [WRC21], [MW 18], [JSW22].

B.2 Additional experiments on runtime of FairProjection

We preform an ablation study on the runtime to illustrate that the parallelizability of FairProjection
can significantly reduce the runtime, especially when the dataset contains hundreds of thousands
of samples. We report the runtime of FairProjection-KL on ENEM with 2 classes, 2 groups,
and with different sizes. In Table 4, we observe that when the number of samples exceeds 200k,
parallelization leads to 10.1x to 15.5x speedup of the runtime.

# of Samples (in thousands)

Method 20 50 100 200 500 ~ 1400
Non-Parallel ~ 0.374£0.00  0.8740.01  1.7240.01  3.53£0.01  9.0940.01  25.2640.02
Parallel (GPU)  0.184£0.00  0.2240.01 0254001 0324001  0.6420.01  1.6340.05

Speedup 2.00% 3.92x 721 10.97x 14.23 % 15.46 x

Table 4: Execution time of parallel (on GPU) and non-parallel (on CPU) versions of the FairProjection-KL
ADMM algorithm on the ENEM datasets with different sizes (time shown in minutes) with gradient boosting
base classifiers.

B.3 Additional Explanation on runtime comparison

The theoretical analysis below contrasts the runtimes of both FairProjection and Reduc-
tion [ABD 18], which is in line with our numerically observed comparison in Table 3. Two
key factors make FairProjection faster than Reduction:

1. FairProjection needs a much lower number of iterations than Reduction does (logarith-
mic vs. polynomial).

2. Each iteration for FairProjection is less computationally expensive than its counterpart in
Reduction. In fact, it is independent of the underlying model being projected, whereas
Reduction requires retraining.

In more detail, one can obtain from [ABD™ 18, Theorem 3] that the Reductions approach converges
in O(N?) iterations (where N is the number of samples and we use the suggested & = 1/2 in
[ABD™ 18, Theorem 3] according to the discussion at the top of page 6 therein). Taking the runtime
of each iteration into consideration, one cannot hope for a runtime faster than O(N*) for Reduction.
In fact, the runtime for Reduction must be higher than O(NN'*), since each of its iterations performs
the subroutine BEST}, (), which is a ‘cost-sensitive classification’ problem (i.e., numerically solving
for an optimal classifier), and the O(NN'*) estimate would hold only if this retraining procedure can
be done in constant time (which might be overly optimistic). In contrast, FairProjection does
not require this retraining procedure at all, runs in O(log N) iterations, has O(N) runtime for each
iteration, and can perform much of each iteration in a parallel way.

For the dependence of the runtime of FairProjection on the number of groups, we note that
there is a linear dependence on the number of constraints K when the number of samples N is
much larger than K (which is the case for all datasets we consider), so one can say that the runtime
is at most YK N log N for an absolute constant y. Note that there are K = 2AC constraints for
statistical parity, where A is the number of sensitive groups, and C' is the number of classes; e.g.,
for the ENEM-1.4M-2C dataset that is used in Table 3, we get K = 8 for statistical parity. The
K factor in the O(K N log N) rate comes from the creation of the vector q in Algorithm 1. If one
does not parallelize, still one gets a runtime of O(C' K N log N). Interestingly, the v;-update step
runtime in Algorithm 1 is O(C') for a fixed ¢ € [IN] for both KL-divergence and Cross Entropy (see
Appendices A.3 and A.4).
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B.4 Omitted Experimental Results on Accuracy-Fairness Trade-off

B.4.1 Accuracy-fairness trade-off in binary classification

We include the results of benchmark methods and Fair Projection on 4 datasets (HSLS, ENEM-
50k, Adult, and COMPAS) and 3 base classifiers (Logistic regression, Random forest, and GBM) in
Figures 3-10. For equalized odds experiments, we have six benchmark methods (Eq0dds, Rejection,
Reduction, CalEqOdds, FACT, LevEqOpp). For statistical parity experiments, we have Rejection
and Reduction. We plot Fair Projection with both cross entropy and KL divergence.

When a method performs significantly worse than others, we did not plot its results. We did not
include Rejection in the Adult plots as it did not produce consistent and reliable results on this
dataset. CalEq0Odds is included only in COMPAS as its performance was significantly worse and
the point was too far away from other curves in all other datasets. FACT is also included only in the
COMPAS plots and the reasons for this are explained in Appendix B.1.3.

We observe that Fair Projection performs consistently well in all four datasets. FairProjection-CE
and FairProjection-KL have similar performance (i.e., overlapping curves) in most cases. The
performance of Fair Projection is often comparable with Reduction. Rejection has competitive
performance in ENEM-50k and HSLS, but its performance falters in COMPAS and Adult. Eq0dds
produces a point with very low MEO but with a substantial loss in accuracy. LevEqOpp also yields a
point with low MEO but with a much smaller accuracy drop. Even though LevEqOpp only optimizes
for FNR difference between two groups, it performs surprisingly well in terms of MEO in all four
datasets. However, we note that LevEqOpp can only produce a point, not a curve, and it does not
enjoy the generality of Fair Projection as it is specifically designed for binary-class, binary-group
predictions and minimizing Equalized Opportunity difference.

B.4.2 Accuracy-fairness trade-off in multi-class/multi-group classification

In the main text, we showed the performance of FairProjection-CE on multi-class prediction with
5 classes and 2 groups (see Figure 2). We include results under a few different multi-class settings
here. First, we show results on ENEM-50k-5-5 which has 5 classes and 5 groups in Figure 11 and 12 .
We obtain 5 groups by not binarizing the race feature. Then, we show results on binary classification
with 5 groups in Figure 13 and 14. Finally, we include the extended version of Figure 2 that include
both FairProjection-CE and FairProjection-KL in Figure 15.

To measure multi-class performance, we extend the definition of mean equalized odds (MEO) and
statistical parity as follows:

MEO = meaf ma>€<8(|TPRi(31) — TPR;(s2)| + |FPR;(s1) — FPR;(s2)])/2 (118)
1 81,82
Statistical Parity = max max |Rate;(s;) — Rate;(s2)| (119)
i€) 51,52E€S
where we denote TPR;(s) = P(Y =i | Y =i,S =), FPR;(s) = P(Y =i | Y #4,5 = 5), and
Rate;(s) = P(Y =i | S = s).
In all experiments, FairProjection reduces MEO and statistical parity significantly (e.g., 0.22 to
0.14) with a negligible sacrifice in accuracy.
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Figure 3: Accuracy-fairness curves of FairProjection and benchmark methods on the HSLS dataset with 3
different models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure 4: Accuracy-fairness curves of FairProjection and benchmark methods on the HSLS dataset with 3
different models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.

ENEM-50k (Logistic Regression) ENEM-50k (Random Forest) ENEM-50k (GBM)
X Base
0.67 0.66 0.67 —$— EqOdds
Rejection
Reduction
. 0.66 o4 . 065 ¢ 0.66 ® —$— LevEqOpp
g g § —$— FairProjection-CE
5 5 5 —— FairProjection-KL
3 065 3 064 g 065 !
< < <
0.64
0.64 063
¢ ¢ 063 4
0.63 062
0.0 0.1 0.2 0.3 0.1 0.2 0.0 0.1 0.2 0.3

Figure S: Al ué"}%? Aithess curves of Fe%ﬁgr%(j“eagﬁ%gdgﬁd benchmark methods'dh tie ENEM-50k-2C dataset
with 3 different models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure 6: Accuracy-fairness curves of FairProjection and benchmark methods on the ENEM-50k-2C dataset
with 3 different models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.
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Figure 7: Accuracy-fairness curves of FairProjection and benchmark methods on COMPAS with 3 different
models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure 8: Accuracy-fairness curves of FairProjection and benchmark methods on COMPAS with 3 different
models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.
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Figure 9: Accuracy-fairness curves of FairProjection and benchmark methods on the Adult dataset with 3
different models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure 10: Accuracy-fairness curves of FairProjection and benchmark methods on the Adult dataset with 3
different models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.
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Figure 11: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k with
with 5 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is MEO.
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Figure 12: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k with
with 5 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is SP.
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Figure 13: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k with
with 2 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is MEO.
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Figure 14: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k with
with 2 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is SP.
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Figure 15: Comparison of FairProjection-CE and FairProjection-KL with Adversarial on ENEM-

50k-5-2, meaning 5 labels, 2 groups. The reason for the difference comparing to Fig. 2 is that we resampled 50k
data points from ENEM.
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Feature

Method Multiclass  Multigroup Scores Curve Parallel Rate Metric
Reductions [ABD 18] X v v v X v/ SP,(M)EO
Reject-option [KKZ12] X v X v X X SP,(M)EO

EqOdds [HPS16] X v X X X v EO
LevEqOpp [CDH™ 19] X X X X X X FNR
CalEqOdds [PRW ' 17] X X v X X v MEO

FACT [KCT20] >§< X X v X X SP,(M)EO
Identifying [TN20] v v v v X X SP,(M)EO
FST [WRC20, WRC21] X v v v X v/ SP,(M)EO
Overlapping [YCK20] v v v v X X SP,(M)EO
Adversarial [ZLM18] v v N/A v v X SP,(M)EO
FairProjection (ours) v v v v v v SP, M)EO

Copy of Table 1. Comparison between benchmark methods. Multiclass/multigroup: implementation takes
datasets with multiclass/multigroup labels; Scores: processes raw outputs of probabilistic classifiers; Curve:
outputs fairness-accuracy tradeoff curves (instead of a single point); Parallel: parallel implementation (e.g.,
on GPU) is available; Rate: convergence rate or sample complexity guarantee is proved; Metric: applicable
fairness metric, with SP< Statistical Parity, EO<+>Equalized Odds, MEO<+Mean EO. Since FairProjection
is a post-processing method, we focus our comparison on post-processing fairness intervention methods, except
for Reductions [ABD ™ 18], which is a representative in-processing method, and Adversarial [ZLM18], which
we use to benchmark multi-class prediction. For comparing in-processing methods, see [LPB 21, Table 1].

B.5 More on related work

Our method is a model-agnostic post-processing method, so we focus our comparison on such
post-processing fairness intervention methods. In the above table, the only exception is Adver-
sarial [ZLM18], which we use to benchmark multi-class prediction. Adversarial [ZLM18] is an
in-processing method based on generative-adversarial network (GAN) where the adversary tries

to guess the sensitive group attribute .S from Y and Y. Even though this GAN-based approach is
applicable to multi-class, multi-group prediction, it cannot be universally applied to any pre-trained
classifier like our method.

EqOdds [HPS16], CalEqOdds [PRW " 17] and LevEqOpp [CDH ™ 19] are post-processing methods
designed for binary prediction with binary groups. They find different decision thresholds for each
group that equalize FNR and FPR of two groups. CalEqOdds [PRW ™ 17] has an additional constraint
that the post-processed classifier must be well-calibrated, and we observe in our experiments that
this stringent constraint leads to a low-accuracy classifier especially when there is a big gap in the
base rate between the two groups. FACT [KCT20] follows a similar approach but generalizes this to
an optimization framework that can have both equalized odds and statistical parity constraints and
flexible accuracy-fairness trade-off. The optimization formulation finds a desired confusion matrix,
and their proposed post-processing method flips the predictions to match the desired confusion matrix.
Reject-option [KKZ12] is similar in that it flips predictions near the decision threshold. In [KKZ12],
instead of finding the optimal confusion matrix, it performs grid search to find the optimal margin
around the decision threshold that can minimize either equalized odds or statistical parity. For these
methods that center around modifying decision thresholds, it is not straightforward to extend to

multi-class and multi-group as one will have to consider (1%!) - ('S!) boundaries.

FST [WRC20, WRC21] tackles fairness intervention via minimizing cross-entropy for binary classes.
Their method is inherently tailored to binary classification and only a cross-entropy objective function,
and our FairProjection-CE reduces to FST for the case of CE and binary classification tasks.
Identifying [JN20] is a method for minimizing KL-divergence for group-fairness intervention, which
changes the label weights (via a convex combination) between unweighted and weighted samples, but
it is not clear that this would navigate a good fairness-accuracy trade-off curve. Their method can be
extended to non-binary prediction with non-binary groups by an appropriate choice of base classifier
and fairness constraints, which is a non-trivial extension of the accompanying code, and we chose
not to pursue this. Note that [JN20] and FairProjection solve the KL-divergence minimization in
very different ways. In particular, the runtime of [WRC20, WRC21] on a 350k training dataset is
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longer than 30 minutes using logistic regression as a base classifier (in comparison, the runtime of
FairProjection for a 500k dataset is less than 1 minute). This is because they require reweighing
the data and retraining a large number of times. Hence, it is inherently non-parallelizable.

B.5.1 Fairness in Multi-Class Prediction

Methods that are based on optimization with a fairness regularizer often can be easily extended to
multi-class prediction as it only requires a small change in the regularizer. For example, instead of
using [FNR(z) — FNR; ()|, one can replace this with

NN PV =j|Y=i,S=0-PY =Y =i8=1) (120)
i€Y jAIEY

FERM [DOBD™ 18] mentions how their method can be extended to multi-class sensitive attribute.
Similarly, we believe that their method can be used for multi-class labels as well. The reductions
approach [ABD™ 18] assumes binary labels but is has natural extension to multi-class, which is
explored in [YCK20]. In-processing methods proposed in [CHS20] and [ZLM 18] allow for both
multi-class labels and multi-class group attributes. [ZLM18] aims to achieve the independence

between the sensitive attribute S and Y or Y given Y by training an adversary who tries to figure

out S. [CHS20] directly estimates the fairness loss (e.g., 120) using kernel density estimation.
They also demonstrate the empirical performance in a three-class classification using synthetic data.
Another in-processing method is [AAV 19] where the authors propose a way to incorporate multi-class
fairness constraints into decision tree training. The preprocessing method suggested in [CKV20]
is conceptually similar to our methods in that it aims to minimize the KL-divergence between
the original distribution and preprcoessed distribution while satisfying fairness constraints. Their
method, however, requires all feature vectors to be binary, and applies only to demographic parity or
representation rate. There exist other notions of fairness, which is different from commonly-used
group fairness metrics such as envy-freeness [BDNP19] or best-effort [KJW21], which can be
applied to multi-class prediction tasks.

Finally, there are unpublished works [DEHH21, YX20] that could handle multi-class classification.
Specifically, [DEHH21] presents a post-processing method that selects different thresholds for each
group to achieve demographic parity. [ Y X20] formulates SVM training as a mixed-integer program
and integrates fairness regularizer in the objective, which can also deal with multi-class.

C Datasheet for ENEM 2020 dataset

Questions

The questions below are derived from [GMV " 21] and aim to provide context about the ENEM-2020
dataset. We highlight that we did not create the dataset nor collect the data included in it. Instead, we
simply provide a link to the ENEM-2020 data at [INE20]. At the time of writing, the ENEM-2020
dataset is open and made freely available by the Brazilian Government at [[INE20] under a Creative
Commons Attribution-NoDerivs 3.0 Unported License [Com]. We provide the datasheet below to
clarify certain aspects of the dataset (e.g., motivation, composition, etc.) since the original information
is available in Portuguese at [INE20], thus limiting its access to a broader audience. The website
[INE20] contains a link to download a .zip file which contains the ENEM-2020 data in . csv format
and extensive accompanying documentation.

The datasheet below is not a substitute for the explanatory files that are downloaded together with
the dataset at [INE20], and we emphatically recommend the user to familiarize themselves with
associated documentation prior to usage. We also strongly recommend the user to carefully read the
“Leia-Me” (readme) file Leia_Me_Enem_2020.pdf available in the same .zip folder that contains
the dataset. The answers in the datasheet below are based on an English translation of information
available at [[INE20] and may be incomplete or inaccurate. The datasheet below is based on our own
independent analysis and in no way represents or attempts to represent the opinion or official position
of the Brazilian Government and its agencies.

We also note that we do not distribute the ENEM-2020 dataset directly nor host the dataset ourselves.
Instead, we provide a link to download the data from a public website hosted by the Brazilian
Government. The dataset may become unavailable in case the link in [INE20] becomes inaccessible.
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Motivation

* For what purpose was the dataset created? According to the “Leia-me” (Read Me) file
that accompanies the data, the dataset was made available to fufill the mission of the Instituto
Nacional de Estudos e Pesquisas Educacionais Anisio Teixeira (INEP) of developing and
disseminating data about exams and evaluations of basic education in Brazil.

* Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)? The dataset was developed by INEP,
which is a government agency connected to the Brazilian Ministry of Education.

* Who funded the creation of the dataset? The data is made freely available by the Brazilian
Government.

Composition

* What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? The instances of the dataset are information about individual students
who took the Exame Nacional do Ensino Médio (ENEM). The ENEM is the capstone exam
for Brazilian students who are graduating or have graduated high school.

* How many instances are there in total (of each type, if appropriate)? The raw data
provided in at [INE20] has approximately 5.78 million entries. The processed version we
use in our experiments has approximately 1.4 million entries.

* Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? The data provided is the lowest level of aggregation of data
collected from ENEM exam-takers made available by INEP.

* What data does each instance consist of? We provide a brief description of the features
available in the raw public data provided at [INE20]. Upon downloading the data, a
detailed description of features and their values are available (in Portuguese) in the file titled
Dicionario_Mircrodados_ENEM_2020.xsls. The features include:

Information about exam taker: exam registration number (masked), year the exam
was taken (2020), age range, sex, marriage status, race, nationality, status of high
school graduation, year of high school graduation, type of high school (public, private,
n/a), if they are a “treineiro” (i.e., taking the exam as practice).

School data: city and state of participant’s school, school administration type (private,
city, state, or federal), location (urban or rural), and school operation status.

Location where exam was taken: city and state.

Data on multiple-choice questions: The exam is divided in 4 parts (translated from
Portuguese): natural sciences, human sciences, languages and codes, and mathematics.
For each part there is data if the participant attended the corresponding portion of
the exam, the type of exam book they received, their overall grade, answers to exam
questions, and the answer sheet for the exam.

— Data on essay question: if participant took the exam, grade on different evaluation
criteria, and overall grade.

— Data on socio-economic questionnaire answers: the data include answers to 25
socio-economic questions (e.g., number of people who live in your house, family
average income, if the your house has a bathroom, etc.).

* Is there a label or target associated with each instance? No, there is no explicit label. In
our fairness benchmarks, we use grades in various components of the exam as a predicted
label.

* Is any information missing from individual instances? Yes, certain instances have missing
values.

* Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? No explicit relationships identified.

¢ Are there recommended data splits (e.g., training, development/validation, testing)?
No.
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* Are there any errors, sources of noise, or redundancies in the dataset? The data contains
missing values and, according to INEP, was collected from individual exam takers. The
information is self-reported and collected at the time of the exam.

* Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? Self-contained.

* Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor—patient confidentiality, data that includes the
content of individuals’ non-public communications)? According to the Leia-me (readme)
file (in Portuguese) that accompanies the dataset and our own inspection, the dataset does
not contain any feature that allows direct identification of exam takers such as name, email,
ID number, birth date, address, etc. The exam registration number has been substituted
by a sequentially generated mask. INEP states that the released data is aligned with the
Brazilian Lei Geral de Protecdo dos Dados (LGPD, General Law for Data Protection). We
emphatically recommend the user to view the Readme file prior to usage.

* Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? The official terminology used by the
Brazilian Government to denote race can be viewed as offensive. Specifically, the term used
to describe the race of exam takers of Asian heritage is “Amarela,” which is the Portuguese
word for the color yellow. Moreover, the term “Pardo,” which roughly translates to brown,
is used to denote individuals of multiple or mixed ethnicity. This outdated and inappropriate
terminology is still in official use by the Brazilian Government, including in its population
census. The dataset itself includes integers to denote race, which are mapped to specific
categories through the variable dictionary.

* Does the dataset relate to people? Yes.

* Does the dataset identify any subpopulations (e.g., by age, gender)? Yes. Information
about age, sex, and race are included in the dataset.

* Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? The Leia-me
(readme) file notes that the individual exam-takers cannot be directly identified from the
data. However, in the same file, INEP recognizes that the Brazilian data protection law
(LGPD) does not clearly define what constitutes a reasonable effort of de-identification.
Thus, INEP adopted a cautious approach: this dataset is a simplified/abbreviated version of
the ENEM micro-data compared to prior releases and aims to remove any features that may
allow identification of the exam-taker.

* Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? The data includes race information and socio-economic questionnaire
answers.

Collection Process

Since we did not produce the data, we cannot speak directly about the collection process. Our
understanding is that the data contains self-reported answers from exam-takers of the ENEM collected
at the time of the exam. The exam was applied on 17 and 24 of January 2021 (delayed due to COVID).
The data was aggregated and made publicly available by INEP at [[INE20]. After consulting the IRB
office at our institution, no specific IRB was required to use this data since it is anonymized and
publicly available.

Preprocessing/cleaning/labeling

¢ Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? Some mild pre-processing was done on the data to ensure
anonymity, as indicated in the “Leia-me” file. This includes aggregating participant ages,
masking exam registration numbers, and removing additional information that could allow
de-anonymization.
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¢ Was the “raw”’ data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? The raw data is not publicly available.

Uses

* Has the dataset been used for any tasks already? We have used this dataset to benchmark
fairness interventions in ML in the present paper. ENEM microdata has also been widely
used in studies ranging from public policy in Brazil to item response theory in high school
exams.

* Are there tasks for which the dataset should not be used? INEP does not clearly define
tasks that should not be used on this dataset. However, no attempt should be made to
de-anonymize the data.

Distribution and Maintenance

The ENEM-2020 dataset is open and made freely available by the Brazilian Government at [INE20]
under a Creative Commons Attribution-NoDerivs 3.0 Unported License [Com] at the time of writing.
The dataset may become unavailable in case the link in [INE20] becomes inaccessible.
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