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Abstract—Disparate treatment occurs when a machine learn-
ing model produces different decisions for groups of individuals
based on a sensitive attribute (e.g., age, sex). In domains where
prediction accuracy is paramount, it could potentially be accept-
able to fit a model which exhibits disparate treatment. To evaluate
the effect of disparate treatment, we compare the performance of
split classifiers (i.e., classifiers trained and deployed separately on
each group) with group-blind classifiers (i.e., classifiers which do
not use a sensitive attribute). We introduce the benefit-of-splitting
for quantifying the performance improvement by splitting classi-
fiers when the underlying data distribution is known. Computing
the benefit-of-splitting directly from its definition involves solving
optimization problems over an infinite-dimensional functional
space. Under different performance measures, we (i) prove an
equivalent expression for the benefit-of-splitting which can be
efficiently computed by solving small-scale convex programs; (ii)
provide sharp upper and lower bounds for the benefit-of-splitting
which reveal precise conditions where a group-blind classifier will
always suffer from a non-trivial performance gap from the split
classifiers.

A full version of this paper is accessible at [1].

I. INTRODUCTION

A machine learning (ML) model exhibits disparate treat-
ment [2] if it treats individuals differently based on a sensitive
attribute (e.g., age, sex). In applications such as hiring, the
existence of disparate treatment can be illegal [3]. However,
in settings such as healthcare, it can be legal and ethical to fit a
model which presents disparate treatment in order to improve
prediction accuracy. For example, the Equal Credit Opportu-
nity Act (ECOA) permits a creditor to use an applicant’s age
and income for analyzing credit, as long as such information
is used in a fair manner (see 12 CFR §1002.6(b)(2) in [4]).

The role of a sensitive attribute in fair classification can
be understood through several metrics and principles. When a
ML model is deployed in practice, fairness can be quantified in
terms of the performance disparity conditioned on a sensitive
attribute, such as statistical parity [5] and equalized odds
[6]. In domains where the goal is to predict accurately (e.g.,
medical diagnostics), non-maleficence (i.e., “do no harm”) and
beneficence (i.e., “do good”) [7] become more appropriate
moral principles for fairness [8–10]. Accordingly, a ML model
should avoid the causation of harm and be as accurate as
possible on each protected group.

The relationship between achieving the above-mentioned
principles and allowing a classifier to exhibit disparate treat-
ment is complex. On the one hand, using a group-blind
classifier (i.e., a classifier that does not use the sensitive
attribute as an input feature) may cause harm unintentionally
since model performance relies on the distribution of the

input data [8, 11–13]. This probability distribution can vary
significantly conditioned on a sensitive attribute due to, for
example, inherent differences between groups [11], differences
in labeling [14], and differences in sampling [15]. On the
other hand, training a separate classifier for each protected
group—a setting we refer to as splitting classifiers—does not
necessarily guarantee non-maleficence when sample size is
limited [16]: groups with insufficient samples may incur a high
generalization error and suffer from overfitting.

We consider two questions that are central to understanding
non-maleficence and beneficence through the use of a sensitive
attribute by a ML model:

1) When is it beneficial to split classifiers in terms of model
performance?

2) When splitting is beneficial, how much do the split
classifiers outperform a group-blind classifier?

First, we show that when the underlying distribution is
known—or, equivalently, an arbitrarily large number of sam-
ples are available—splitting never harms any group in terms of
average performance metrics. Thus, splitting will naturally fol-
low the non-maleficence principle in the large-sample regime.
Second, we introduce a notion called the benefit-of-splitting
which measures the performance improvement by splitting
classifiers compared to using a group-blind classifier across all
groups. The benefit-of-splitting is also an information-theoretic
quantity as it only relies on the underlying data distribution
rather than number of samples or hypothesis class.

The definition of the benefit-of-splitting involves a model
performance measure and, hence, we divide our analyses
into two parts based on different choices of this measure. In
Section III, we quantify model performance in terms of stan-
dard loss functions (e.g., `1 loss). For the benefit-of-splitting
under these loss functions, we provide sharp upper and lower
bounds (Theorem 1) that capture when splitting classifiers
benefits model performance the most. These bounds indicate
two factors (see Figure 1 for an illustration) which are central
to the benefit-of-splitting: (i) disagreement between labeling
functions1, (ii) similarity between unlabeled distributions1.

In Section IV, we consider false error rate as a performance
measure since in applications such as medical diagnostics, high

1 We borrow the terms “labeling function” and “unlabeled distribution”
from the domain adaptation literature [17, 18]. The unlabeled distribution is a
(marginal) probability distribution of the unlabeled data. The labeling function
takes a data point as an input and produces the probability of its binary label
being 1. Furthermore, the labeling function can be viewed as a “channel”
(i.e., conditional distribution) in the information theory parlance. The formal
definitions are given in Section I-A.
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Fig. 1. The taxonomy of splitting based on two different factors.
Samples from two groups are depicted in red and blue, respectively,
and their labels are represented by +, −. Each group’s labeling
function is shown with the corresponding color and the arrows
indicate the regions where the points are labeled as +. Information-
theoretically, splitting classifiers benefits model performance the most
if the labeling functions are different and the unlabeled distributions
are similar (yellow region).

false error rate could result in unintentional harm [19]. Under
this metric, computing the benefit-of-splitting directly from
its definition may at first seem intractable since it involves
an optimization over an infinite-dimensional functional space.
Nonetheless, we prove that the benefit-of-splitting under false
error rate has an equivalent, dual expression (Theorem 2)
which only requires solving two small-scale convex programs.
Furthermore, the objective functions of these convex programs
have closed-form supergradients (Proposition 1). Combining
these two results leads to an efficient procedure for computing
the benefit-of-splitting.

The proof techniques of this paper are based on fundamental
tools found in statistics, such as Brown-Low’s two-points
lower bound [20], and methods in convex analysis, such as
Ky Fan’s min-max theorem [21]. These tools are widely
used in applications such as non-parametric estimation [22],
and are useful for analyzing the min-max risk in statistical
settings [23–27]. Furthermore, the factors that we provide for
understanding the effect of splitting classifiers are inspired by
the necessary and sufficient conditions of domain adaptation
learnability in Ben-David et al. [28].

A. Notation and Definitions

Consider a binary classification task (e.g., detecting pneu-
monia from X-rays) where the goal is to learn a probabilistic
classifier h : X → [0, 1] that predicts a label (e.g., presence
of pneumonia) Y ∈ {0, 1} using input features (e.g., chest X-
rays) X ∈ X . We assume there is an additional binary sensitive
attribute (e.g., sex) S ∈ {0, 1} that does not belong to the input

features X . We denote the unlabeled probability distributions
of input features conditioned on the sensitive attribute by

P0 , PX|S=0, P1 , PX|S=1.

The labeling functions of the two groups are denoted by

y0(x) , PY |X,S(1|x, 0), y1(x) , PY |X,S(1|x, 1).

In order to measure the difference between two unlabeled
distributions, we recall Csiszár’s f -divergence [29]. Let f :
(0,∞) → R be a convex function with f(1) = 0 and P0,
P1 be two probability distributions over X . The f -divergence
between P0 and P1 is defined by

Df (P0‖P1) ,
∫
X
f
(

dP0

dP1

)
dP1. (1)

II. THE BENEFIT-OF-SPLITTING

We study the impact of disparate treatment by comparing
the performance between optimal group-blind and split clas-
sifiers. First, we illustrate the difference between group-blind
and split classifiers through the example of logistic regressions:
• a group-blind classifier does not use a sensitive attribute

as an input: h(x) = logistic(wTx) where logistic(t) ,
1/(1 + exp(−t)) for t ∈ R;

• split classifiers are a set of classifiers trained and deployed
separately on each group: hs(x) = logistic(wTs x) for s ∈
{0, 1}.

We measure the performance of both group-blind and split
classifiers in terms of the disadvantaged group (i.e., the group
with worst performance). For a given performance measure
Ls(·) (higher values indicate a worse performance), the perfor-
mance of a group-blind classifier h and a set of split classifiers
{hs}s∈{0,1}, respectively, is measured by

max
s∈{0,1}

Ls(h) and max
s∈{0,1}

Ls(hs).

Consequently, the optimal group-blind and split classifiers
achieve the performance

inf
h:X→[0,1]

max
s∈{0,1}

Ls(h) and max
s∈{0,1}

inf
h:X→[0,1]

Ls(h).

Next, we introduce the benefit-of-splitting to quantify the
effect of splitting classifiers compared to using a group-blind
classifier.

Definition 1. For a given performance measure Ls(·) with
s ∈ {0, 1}, we define the benefit-of-splitting as

εsplit , inf
h:X→[0,1]

max
s∈{0,1}

Ls(h)− max
s∈{0,1}

inf
h:X→[0,1]

Ls(h), (2)

where the infimum is taken over all (measurable) functions.

The benefit-of-splitting is the difference between the per-
formance of the optimal group-blind and split classifiers. In
other words, if h∗ and {h∗s}s∈{0,1} are optimal group-blind
and split classifiers respectively, i.e.,

h∗ ∈ argmin
h:X→[0,1]

max
s∈{0,1}

Ls(h),

h∗s ∈ argmin
h:X→[0,1]

Ls(h) s ∈ {0, 1},



the benefit-of-splitting can be equivalently expressed as

εsplit = max
s∈{0,1}

Ls(h
∗)− max

s∈{0,1}
Ls(h

∗
s). (3)

By the optimality of h∗s and the max-min inequality, we have
Ls(h

∗) ≥ Ls(h
∗
s) for s ∈ {0, 1} and εsplit ≥ 0 which implies

that, information-theoretically, using a separate classifier on
each group will never diminish model performance com-
pared to using a group-blind classifier. A natural question is:
how much performance improvement does splitting classifiers
bring? Before answering this question, we specify performance
measures of interest and present the benefit-of-splitting under
these performance measures.

A. Loss Reduction by Splitting
The first type of performance measures contains standard

loss functions which quantify the disagreement between the
labeling function ys and the probabilistic classifier h. We
recast the benefit-of-splitting under these loss functions below.

Definition 2. The `1-benefit-of-splitting εsplit,1 is the benefit-
of-splitting in Definition 1 with the performance measure:

Ls(h) = E [|h(X)− ys(X)| | S = s] .

The `2-benefit-of-splitting εsplit,2 is the benefit-of-splitting in
Definition 1 with the performance measure:

Ls(h) = E
[
(h(X)− ys(X))2 | S = s

]
.

The KL-benefit-of-splitting εsplit,KL is the benefit-of-splitting
in Definition 1 with the performance measure:

Ls(h) = E [DKL(ys(X)‖h(X)) | S = s] ,

where DKL(p‖q) , p log(p/q) + (1− p) log((1− p)/(1− q))
for p, q ∈ [0, 1].

B. False Error Rate Reduction by Splitting
Now we use the false error rate (FER) as a performance

measure. The false error rate of a classifier is the maximum
between (generalized) false positive rate and (generalized)
false negative rate [30].

Definition 3. The FER-benefit-of-splitting εsplit,FER is the
benefit-of-splitting in Definition 1 with the performance mea-
sure Ls(h) being equal to

max {E [h(X)|Y = 0, S = s] ,E [1− h(X)|Y = 1, S = s]} .
a) Connection with equalized odds: Equalized odds [6]

is a commonly used group fairness measure that requires
different groups to have the same false positive and false neg-
ative rates. However, imposing equalized odds constraints may
lead to a performance reduction in classification [31–34]. In
contrast, the benefit-of-splitting aims to capture the principles
of non-maleficence and beneficence: classifiers should avoid
the causation of harm and achieve the best performance on
each group. By taking the optimal group-blind classifier as a
baseline approach, this may allow split classifiers to potentially
exhibit performance disparities between groups—as long as
the split classifiers do not perform worse than the baseline
approach and are as accurate as possible.

III. THE TAXONOMY OF SPLITTING

In this section, we analyze the loss reduction by splitting
classifiers compared to using a group-blind classifier. We
achieve this goal by upper and lower bounding the benefit-
of-splitting under different loss functions (Definition 2). These
bounds reveal factors which could impact the effect of splitting
classifiers and lead to a taxonomy of splitting, i.e., a character-
ization of when splitting benefits model performance the most
or splitting does not bring much benefit.

Theorem 1. The `1-benefit-of-splitting εsplit,1 can be upper
bounded by

min

{
min

s∈{0,1}
D2(y1, y0|s) ·

√
1− DTV(P0‖P1),

1

2
max
s∈{0,1}

D1(y1, y0|s)
}

and lower bounded by

1

2
max
s∈{0,1}

{D1(y1, y0|s)− D2(y1, y0|s) · d2(P1−s‖Ps)}

where, for p ≥ 1 and s ∈ {0, 1},

Dp(y1, y0|s) , (E [|y1(X)− y0(X)|p | S = s])
1/p

,

DTV(P0‖P1) is the total variation distance and d2(P1−s‖Ps)
is Marton’s divergence. The `2-benefit-of-splitting εsplit,2 can
be upper bounded by

min

{
min

s∈{0,1}
D4(y1, y0|s)2 ·

√
1− DTV(P0‖P1),

1

4
max
s∈{0,1}

D2(y1, y0|s)2

}
and lower bounded by

max
s∈{0,1}


(

D1(y1, y0|s)√
Dχ2(Ps‖P1−s) + 1 + 1

)2


where Dχ2(Ps‖P1−s) is the chi-square divergence. The KL-
benefit-of-splitting εsplit,KL can be upper bounded by

min
{

2JS(PX,Y |S=0‖PX,Y |S=1)− 2JS(P0‖P1),

max
s∈{0,1}

E
[
DKL

(
ys(X)‖y0(X)+y1(X)

2

)
| S = s

]}
and lower bounded by

JS(PX,Y |S=0‖PX,Y |S=1)− JS(P0‖P1)

where JS(·‖·) is the Jensen–Shannon divergence.

In particular, the proof of the lower bound of εsplit,2 relies
on the following technical lemma.

Lemma 1. For any measurable classifier h : X → [0, 1] and
constant 0 ≤ ε < D2(y1, y0|0)2, if

E
[
(h(X)− y0(X))2 | S = 0

]
≤ ε, (4)



then E
[
(h(X)− y1(X))2 | S = 1

]
≥ (A−B√ε)2, where

A , D1(y1, y0|1), B ,
√

Dχ2(P1‖P0) + 1.

Proof. Consider a convex optimization problem

min
h:X→[0,1]

∫
(h(x)− y1(x))2dP1(x),

s.t.
∫

(h(x)− y0(x))2dP0(x) ≤ ε.

Computing the Gateaux derivative of the Lagrange multiplier
gives the following optimal conditions [35, Theorem 6.6.1],

(h(x)− y1(x))dP1(x) + λ(h(x)− y0(x))dP0(x) = 0, (5)

λ

(∫
(h(x)− y0(x))2dP0(x)− ε

)
= 0, (6)

λ ≥ 0, (7)

which yields an optimal classifier:

h∗(x) =
y1(x)r(x) + λy0(x)

r(x) + λ
(8)

where r(x) , dP1(x)
dP0(x) . If λ = 0, then h∗(x) = y1(x) and

E
[
(h∗(X)− y0(X))2 | S = 0

]
= D2(y1, y0|0)2.

However, this contradicts our assumptions that

E
[
(h∗(X)− y0(X))2 | S = 0

]
≤ ε < D2(y1, y0|0)2.

Hence, we have λ > 0. In this case, (6) and (8) imply∫
r(x)2

(
y1(x)− y0(x)

r(x) + λ

)2

dP0(x) = ε. (9)

By the expression of the optimal classifier in (8),

E
[
(h∗(X)− y1(X))2 | S = 1

]
≥
(∫

λ|y1(x)− y0(x)|
r(x) + λ

dP1(x)

)2

=

(
D1(y1, y0|1)−

∫
r(x)|y1(x)− y0(x)|

r(x) + λ
dP1(x)

)2

(10)

where the first step is due to the Cauchy-Schwarz inequality.
By the Cauchy-Schwarz inequality again and (9), we have∫

r(x)|y1(x)− y0(x)|
r(x) + λ

dP1(x)

≤
√∫

r(x)2

(
y1(x)− y0(x)

r(x) + λ

)2

dP0(x)

∫
r(x)dP1(x)

=
√
εE [r(X) | S = 1] =

√
ε
(
Dχ2(P1‖P0) + 1

)
. (11)

Combining (10) and (11) leads to the desired conclusion.

Now we consider extreme scenarios to verify the sharpness
of the bounds in Theorem 1 and to understand when splitting
classifiers benefits model performance the most (see Figure 1
for an illustration).
• Consider the setting where two groups share the same label-

ing function (i.e., y0 = y1). All the upper and lower bounds

in Theorem 1 for the benefit-of-splitting under different loss
functions become zero and, hence, the bounds are sharp.
This is quite intuitive as one can use the labeling function
y0 (or y1) as a group-blind classifier and it achieves perfect
performance on both groups. Hence, there is no benefit of
splitting classifiers.

• Consider the setting where two groups share the same
unlabeled distribution (i.e., P0 = P1). The upper and lower
bounds of εsplit,1 are both E [|y1(X)− y0(X)|] /2, which is
equal to εsplit,1. The bounds of εsplit,2 become

1

4
E [|y1(X)− y0(X)|]2 ≤ εsplit,2 ≤

1

4
E
[
(y1(X)− y0(X))2

]
.

If, in addition, |y0(x)− y1(x)| is the same across all x, the
upper and lower bounds become the same and, hence, are
sharp. Finally, the bounds of εsplit,KL become

εsplit,KL ≤ max
s∈{0,1}

E
[
DKL

(
ys(X)‖y0(X)+y1(X)

2

)]
εsplit,KL ≥ E [JS(y0(X)‖y1(X))] .

If, in addition, E [DKL (y0(X)‖(y0(X) + y1(X))/2)] =
E [DKL (y1(X)‖(y0(X) + y1(X))/2)], then the upper and
lower bounds are equal. This extreme case indicates that
when different groups have the same unlabeled distribution
(i.e., P0 = P1), the benefit-of-splitting is determined by
the disagreement between their labeling functions (i.e., large
disagreement leads to high benefit).

• Consider the setting where two groups have unlabeled distri-
butions lying on disjoint support sets. In this case, the upper
bounds of εsplit,1, εsplit,2, and εsplit,KL are zero. In other words,
there is no benefit of splitting classifiers when the unlabeled
distributions are mutually singular. One can interpret this
fact by considering a special group-blind classifier which
mimics the labeling function of each group in the region
where its unlabeled distribution lies. This classifier achieves
perfect performance for each group. Note that such group-
blind classifier exists since we do not restrict the space of
potential classifiers and, hence, any (measurable) function
could become a group-blind or split classifier.

To summarize, splitting classifiers brings the most benefit if
two groups have similar unlabeled distributions and different
labeling functions. This taxonomy of splitting appears for all
the commonly used loss functions (i.e., `1, `2, and KL loss).

IV. AN EFFICIENT PROCEDURE FOR COMPUTING THE
EFFECT OF SPLITTING

In the last section, we provide upper and lower bounds for
the benefit-of-splitting under different loss functions. Here,
we consider a different performance measure: false error rate.
It turns out that the benefit-of-splitting under false error rate
(εsplit,FER in Definition 3) has an equivalent expression which
leads to an efficient procedure of computing εsplit,FER.

Even with perfect knowledge of the underlying data dis-
tribution, computing the benefit-of-splitting directly from its
definition is challenging. This is because the space of potential
classifiers is unrestricted (i.e., any measurable function could



be used as a group-blind or split classifier) and solving op-
timization problems over this infinite-dimensional functional
space could be intractable. One may attempt to circumvent
this issue by restricting the classifiers over a hypothesis class.
However, this has two limitations. First, it is unclear how to
choose a hypothesis class in order to compute the benefit-
of-splitting reliably. In fact, different hypothesis classes could
result in completely different values of the benefit-of-splitting.
Second, as evidenced in [36], training the optimal group-blind
or split classifiers may suffer from a non-convexity issue.

We leverage the special form of the false error rate in
Definition 3 and prove an equivalent expression of εsplit,FER
below which can be computed by solving two small-scale
convex programs. The objective functions of these convex
programs have closed-form supergradients. Hence, they can
be solved efficiently via standard solvers, such as (stochastic)
mirror descent [37, 38]. The equivalent expression of εsplit,FER
is given in the following theorem.

Theorem 2. Assume that Pr(Y = i, S = s) > 0 for any
i, s ∈ {0, 1}. The FER-benefit-of-splitting εsplit,FER can be
equivalently written as

max
µµµ∈∆4

 ∑
s∈{0,1}

µs,1 + E

 ∑
s,i∈{0,1}

µs,iφs,i(X)


−


− max

ννν(s)∈∆2

for s∈{0,1}

ν(s)
1 + E

 ∑
i∈{0,1}

ν
(s)
i φs,i(X)


−

 .

Here ∆d , {z ∈ Rd | ∑d
i=1 zi = 1, zi ≥ 0}, (a)− ,

min{a, 0}, µµµ , (µ0,0, µ0,1, µ1,0, µ1,1), ννν(s) , (ν
(s)
0 , ν

(s)
1 ),

and for s, i ∈ {0, 1}

φs,i(x) ,
(1− i− ys(x)) Pr(S = s | X = x)

Pr(Y = i, S = s)
.

Proof sketch. Recall that εsplit,FER can be written as

inf
h:X→[0,1]

max
s∈{0,1}

Ls(h)− max
s∈{0,1}

inf
h:X→[0,1]

Ls(h)

where the performance measure Ls(h) is in Definition 3. The
inf-max term can be equivalently written as

inf
h:X→[0,1]

max
µµµ∈∆4

{ ∑
s∈{0,1}

µs,0E [h(X) | Y = 0, S = s]

+ µs,1E [1− h(X) | Y = 1, S = s]
}
.

(12)

The key step in our proof is to swap maximum and infimum in
(12) by using Ky Fan’s min-max theorem [21]. Then for a fixed
µµµ, the optimal classifier owns a closed-form expression. After
some algebraic manipulations, (12) becomes the first convex
program in the equivalent expression of εsplit,FER. In the same
vein, the another term maxs∈{0,1} infh:X→[0,1] Ls(h) becomes
the second convex program.

Next, we show that the objective functions of the convex
programs in Theorem 2 have closed-form supergradients.

Proposition 1. Under the setting in Theorem 2, the objective
functions g : ∆4 → R and gs : ∆2 → R

g(µµµ) ,
∑

s∈{0,1}

µs,1 + E

 ∑
s,i∈{0,1}

µs,iφs,i(X)


−


gs(ννν) , ν1 + E

 ∑
i∈{0,1}

νiφs,i(X)


−


have a closed-form supergradient, respectively:i+ E

ψs,i(X) · I
[∑
s′,i′

µs′,i′φs′,i′(X) < 0
]∣∣∣S = s


s,i(

i+ E

[
ψs,i(X) · I

[∑
i′

νi′φs,i′(X) < 0
]∣∣∣∣∣S = s

])
i

where I[·] is the indicator function and

ψs,i(x) ,
1− i− ys(x)

Pr(Y = i | S = s)
, s, i ∈ {0, 1}.

When the underlying data distribution is known, one can
compute εsplit,FER by solving the convex programs in The-
orem 2 via standard tools, such as mirror descent, with
convergence guarantees [38]. This is non-trivial because, as
stated before, computing εsplit,FER directly from its definition
could be intractable.

In practice, when the underlying data distribution is un-
known, one can first approximate the conditional distribution
Pr(S = 1|X = x) and the labeling functions y0(x), y1(x)
by training three well-calibrated binary classifiers. These clas-
sifiers will be called when computing the supergradient of
the objective functions (Proposition 1). Our procedure can be
understood through the following two steps:

1) training a classifier to identify the sensitive attribute using
input features and a classifier for each group to predict
label using input features;

2) solving (convex) programs with these classifiers in hand.
We remark that this two-step approach has also appeared in
[e.g., 12, 39] for designing “fair” classifiers. Numerical results
are available in the full version of this paper [1].
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