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Abstract—We capitalize on the Wasserstein distance to obtain
two information-theoretic bounds on the generalization error of
learning algorithms. First, we specialize the Wasserstein distance
into total variation, by using the discrete metric. In this case
we derive a generalization bound and, from a strong data-
processing inequality, show how to narrow the bound by adding
Gaussian noise to the output hypothesis. Second, we consider
the Wasserstein distance under a generic metric. In this case we
derive a generalization bound by exploiting the geometric nature
of the Kantorovich-Rubinstein duality theorem. We illustrate the
use of these bounds with examples. Our bounds can handle
certain cases in which existing bounds via mutual information
fail.

I. INTRODUCTION

From an information-theoretic viewpoint, a learning algo-
rithm can be thought of as a channel [1], the input being the
training dataset and the output being the learned hypothesis
(e.g., regression coefficients in linear regression, layer weights
in a neural network). In practice, such a channel is typically
noisy: a single input dataset may lead to different hypotheses,
where the probability of observing a given output hypothesis
depends on the learning model to be trained, on the risk func-
tion to be minimized, and on the (randomized) minimization
algorithm itself. Although the output hypothesis is determined
by minimizing the empirical risk function w.r.t. a particular
training dataset, it is ultimately expected to generalize, i.e.,
yield a low risk w.r.t. the true (and unknown) underlying data
distribution. As a result, an essential performance measure
of learning algorithms is given by the difference between
the population risk and the empirical risk, known as the
generalization error.

The generalization error is usually analyzed in terms of
upper bounds. A traditional approach relies on characterizing
the complexity of the hypothesis class, e.g., via VC-dimension
or Rademacher complexity [2]. This leads to algorithm-
independent bounds, in the sense that, except for the hypoth-
esis class, any particulars about the inner structure of the
learning process at hand are fully ignored. In view of that, the
resulting bounds are usually loose, representing a sort of worst-
case scenario over all learning algorithms that share the hy-
pothesis class under consideration. For example, the k-Nearest
Neighbors algorithm (k-NN) has an infinite VC-dimension,
while it still generalizes well [3]. This drawback has motivated
the development of algorithm-dependent bounds, such as PAC-
Bayesian bounds [4] and algorithm stability bounds [3].

More recently, Russo and Zou [5] introduced an
information-based framework to analyze overfitting in the
context of adaptive data analysis. In that work, generaliza-
tion bounds were cast in terms of mutual information by
leveraging the intrinsic connection between sub-Gaussian con-
centration and KL-divergence bounds on transportation cost
(cf. [5, Proposition 3.1] and the “transportation lemma” [6,
Lemma 4.18]). This framework was further explored by Xu
and Raginsky [1]. In [7], Alabdulmohsin used total variation
to bound the generalization error when the loss function
is bounded. In [8], Raginsky et al. proposed measures of
algorithmic stability based on total variation, mutual infor-
mation, and Wasserstein distance, respectively, and used them
to upper bound the generalization error. Other information-
theoretic metrics have been used to derive alternative upper
bounds [9]–[11]. All these bounds follow a similar vein, with
the generalization error being related to how much the output
hypothesis depends on the input dataset.

In this work, we take a similar approach and derive new
upper bounds on the generalization error of learning algo-
rithms. Motivated by the drawback that mutual information —
as well as the error bounds based on it — may become infinite,
we derive generalization results via the Wasserstein distance.
First, we specialize the Wasserstein distance to total variation
by considering the discrete metric. In this case we derive
an upper bound on the generalization error and, by applying
a strong data-processing inequality [12], we show how to
tighten the bound by adding Gaussian noise to the learning
output. Second, at the expense of requiring the loss function
to be Lipschitz continuous with respect to the hypothesis, we
allow for the Wasserstein distance to be used along with a
generic metric. In this case we derive an upper bound on the
generalization error by virtue of the Kantorovich-Rubinstein
duality theorem [13]. An interesting feature of this bound
is that it can accommodate the Euclidean metric, thereby
assessing the dependency between the learned hypothesis and
the input dataset in a geometric manner. Another advantage
of this bound is its capability to handle deterministic learning
mappings, in which case existing bounds based on mutual
information would fail. We also provide examples to illustrate
the derived bounds.

The previous works more closely related to ours are those
by Alabdulmohsin [7] and Raginsky et al. [8]. Compared
to [7], we provide an upper bound based on total variation



that can accommodate unbounded loss functions, as well as
we capitalize on a strong data-processing inequality to produce
a more comprehensive explanation about why adding noise to
the learning output may reduce overfitting. Moreover, we avoid
assumptions on the stability of the learning algorithms made
in [8]. After submitting the present work, we became aware of
the results by Lopez and Jog [14] where generalization error
bounds using Wasserstein distances are also provided. The
approach in [14] differs from ours in a couple of aspects. First,
we include an analysis of generalization error tailored to total
variation (see Theorem 1), i.e., for the Wasserstein distance
under the discrete metric. Second, our focus is on exploiting
the geometric concentration of the returned hypotheses via a
Wasserstein-distance bound (see Example 2), a feature which
is not explored in [14].

II. PROBLEM STATEMENT AND PRELIMINARIES

We follow the notation from [1]. Consider an instance space
Z , a hypothesis space W , and a loss function ` : W ×Z →
R. A learning algorithm can be represented as a conditional
distribution PW |S that takes as input n i.i.d. data samples S ,
(Z1, · · · , Zn), with Zi ∼ µ, and outputs a hypothesis W ∈ W .
The population risk of a given hypothesis w ∈ W w.r.t. µ is
defined as

Lµ(w) , E [`(w,Z)] =

∫
Z
`(w, z)µ(dz). (1)

Since µ is unknown, Lµ(w) cannot be computed directly. We
instead compute the empirical risk of w w.r.t. the input dataset
S by averaging the loss function over all data samples:

LS(w) ,
1

n

n∑
i=1

`(w,Zi). (2)

The difference Lµ(W )−LS(W ) is called generalization error
and its expected value is denoted as

gen(µ, PW |S) , E [Lµ(W )− LS(W )] , (3)

where the expectation is taken over the joint distribution
PS,W = µ⊗n ⊗ PW |S .

Our main goal is to derive upper bounds on (3) (see
Section III) via Wasserstein distance. The Wasserstein distance
between two probability distributions µ and ν is defined as

W(µ, ν) , inf
γ∈Γ(µ,ν)

∫
d(x, x′)dγ(x, x′). (4)

Here, d(·, ·) is a metric and Γ(µ, ν) denotes the set of all
couplings of µ and ν (i.e., all joint distributions with marginals
µ and ν). The Kantorovich-Rubinstein duality [13] states that

W(µ, ν) = sup
f :Lip(f)≤1

{E [f(U)]− E [f(V )]} , (5)

where U ∼ µ, V ∼ ν, and the supremum is taken over all
1-Lipschitz functions in the metric d, i.e., functions f such
that, for all x, x′,

|f(x)− f(x′)|≤ d(x, x′). (6)

The total-variation distance between two probability distri-
butions µ and ν is defined as

TV(µ, ν) , sup
E
|µ(E)− ν(E)| , (7)

where the supremum is taken over all measurable sets E.
Note that the total-variation distance equals the Wasserstein
distance associated to the discrete metric d(x, x′) = Ix 6=x′ ,
where I denotes the indicator function. With this notation,
the T-information between two random variables U and V is
defined as T(U ;V ) , TV(PU,V , PU ⊗ PV ).

Finally, a random variable U is called σ-subgaussian if, for
all λ ∈ R, E

[
eλ(U−E[U ])

]
≤ eλ

2σ2/2. If U is σ-subgaussian,
then [6] for all t ≥ 0,

max {Pr(U − E [U ] > t),Pr(U − E [U ] < −t)} ≤ e−
t2

2σ2 .

The converse also holds true, up to a constant factor modifying
the subgaussianity constant.

III. BOUNDS ON THE GENERALIZATION ERROR

In this section we investigate the generalization error using
Wasserstein distance. We start with total variation, the Wasser-
stein distance associated to the discrete metric, from which
we provide a first bound on the generalization error. Then
we derive an alternative bound using the Wasserstein distance
with a generic metric, though requiring in this case the loss
function to be Lipschitz continuous.

A. Discrete Metric

We start with a technical lemma, which will be used to
provide an upper bound on the expected generalization error.

Lemma 1. Let f : X → R be a measurable and non-negative
function. If f(X̄) is σ-subgaussian with X̄ ∼ Q, then for any
probability measure P and X ∼ P ,

E
[
f(X̄)− f(X)

]
≤ δ

1− δ

[
E [f(X)] + σ

1 + 4 log(1/δ)√
2 log(1/δ)

]
,

(8)
where δ , TV(P,Q).

Proof. See Appendix A.

In Theorem 1 (on the next page), E [f(X)] will be instan-
tiated as the expected empirical risk in order to upper bound
the generalization error. Alas, the upper bound (8) contains
E [f(X)] on the RHS of the inequality. Next, we provide an
example that shows that this dependence is unavoidable and,
in general, the subgaussian constant σ and the total variation
TV(P,Q) do not suffice to upper-bound the LHS of (8).

Example 1. Let g : (0,+∞) × (0, 1) → R ∪ {+∞} be a
function such that, under the assumptions in Lemma 1,

E
[
f(X̄)− f(X)

]
≤ g(σ,TV(P,Q)). (9)

We will show that g is necessarily trivial, i.e., g ≡ +∞.



Let t ∈ (0, 1), σ > 0, and c > 1 + σ. We consider the
function f(x) = xI(0,+∞)(x) and the probability distributions
Q and P with associated probability density functions

q(x) =
1

2σ
I[c−σ,c+σ](x), (10)

p(x) =
1

2σ
I[c−σt,c+σt](x) + I[0,1−t](x). (11)

In this setting, it is straightforward to verify that f(X̄) is σ-
subgaussian with X̄ ∼ Q, E [f(X)] = tc + 1

2 (1 − t)2, and
TV(P,Q) = 1− t. A direct computation shows that

E
[
f(X̄)− f(X)

]
= (1− t)c− 1

2
(1− t)2

=
δ

1− δ

(
E [f(X)]− δ

2

)
.

Thus, for σ > 0 and t ∈ (0, 1) fixed, E
[
f(X̄)− f(X)

]
→∞

as c → ∞. Therefore, g(σ,TV(P,Q)) = +∞, as we wanted
to show. Note that, in this example, DKL(P‖Q) =∞.

It is possible to provide an upper bound on the generaliza-
tion error of a learning algorithm by applying Lemma 1 to
P = PS,W , Q = PS ⊗ PW , and f(s, w) = 1

n

∑n
i=1 `(w, zi).

This is attained in the following theorem.

Theorem 1. Suppose that the loss function `(·, ·) is non-
negative and `(w,Z) is σ-subgaussian under Z ∼ µ for all
w ∈ W . Then

gen(µ, PW |S) ≤ δ

1− δ

(
E [LS(W )] +

σ√
n

1 + 4 log(1/δ)√
2 log(1/δ)

)
,

where δ , T(S;W ). In particular,

E [Lµ(W )] ≤ 1

1− δ

(
E [LS(W )] +

σδ√
n

1 + 4 log(1/δ)√
2 log(1/δ)

)
.

Proof. See Appendix B.

In practice, the population risk quantifies how well the out-
put hypothesis performs over new fresh data samples. Observe
that the upper bounds in Theorem 1 becomes tighter when (i)
the number of samples n increases, (ii) the expected empirical
risk E [LS(W )] decreases, or (iii) the T-information T(S;W )
decreases. Contributions (i) and (ii) can be accomplished by
collecting more samples and training a model that better fits
the input dataset, respectively. As for contribution (iii), an
important remark is in order, as follows.

Strong data-processing inequalities (see, e.g., [12]) establish
that the T-information decreases by adding Gaussian noise to
the output hypothesis. More specifically, if S → W → Y ,
where ‖W‖≤ A and Y = W +N , with N ∼ N (0, Id), then

T(S;Y ) ≤ ηTV(A)T(S;W ), (12)

where ηTV(A) , 1−
√

2
π

∫∞
A
e−t

2/2dt. In particular, we have
T(S;Y ) < 1. Combining (12) with the upper bound on the
generalization error in Theorem 1, we can obtain a new upper
bound on the generalization error that is guaranteed to be
finite. This contrasts with the mutual-information approach,
in which case the RHS of (12) can remain infinite.

B. Generic Metric

In Section III-A, we provided an upper bound on the
generalization error via total variation and connected it with
a strong data-processing inequality. In this section we take an
approach to generalization bounds using a generic metric for
the Wasserstein distance.

To better motivate our transition from total-variation dis-
tance to a generic Wasserstein distance, let us discuss some
drawbacks of the former. On the one hand, it is known that, on
a compact space, convergence in distribution is equivalent to
convergence in Wasserstein distance (see, e.g., [15]). On the
other hand, convergence in distribution does not necessarily
imply convergence in total-variation distance (see [16] for
a simple example on this issue). Hence, it might be hard
to combine total variation with classical probability results
relying on convergence in distribution or related notions.

The above observation naturally motivates an alternative
bound on the generalization error by exploiting the geometric
nature of the Wasserstein distance on compact spaces. The
following theorem, whose proof relies on the Kantorovich-
Rubinstein duality, provides an alternative upper bound on
the generalization error that takes into account the geometric
concentration of the output hypothesis of a learning algorithm.

Theorem 2. Suppose that the empirical risk Ls(·) is L-
Lipschitz for all s ∈ Zn, i.e., |Ls(w)− Ls(w′)|≤ Ld(w,w′).
Then ∣∣gen(µ, PW |S)

∣∣ ≤ L · E [W(PW , PW |S)
]
, (13)

where the expectation is taken over PS .

Proof. See Appendix C.

Theorem 2 does not require the empirical risk function to
have the form in (2). Nonetheless, if `(·, z) is L-Lipschitz for
all z ∈ Z , the empirical risk as defined in (2) is also L-
Lipschitz. While the results of the previous section are more
general as they do not require any Lipschitzianity, many loss
functions in machine learning are indeed Lipschitz.

Observe that the Lipschitzianity requirement is equivalent
to boundedness under the discrete metric. Hence, Theorem 2
implies that if the empirical risk function is bounded by L,
i.e., |Ls(w)|≤ L, ∀s ∈ Zn,∀w ∈ W , then∣∣gen(µ, PW |S)

∣∣ ≤ 2L · TV(S;W ). (14)

As shown in Theorem 2, the generalization error is up-
per bounded by the expectation of the Wasserstein distance
between the distribution of the output hypothesis and the
corresponding distribution conditioned on the input dataset.
So, it is natural to consider using W(PW , PW |S=s) as a
regularization term and minimize the empirical risk function
along with the Wasserstein distance. Since PW depends on the
(unknown) underlying data distribution µ, we replace it with



the distribution δ0 (i.e., Dirac delta function). In other words,
we consider

argmin
PW |S=s

(
E [Ls(W )|S = s] + λW(PW |S=s, δ0)

)
= argmin

PW |S=s

(
E [Ls(W ) + λ‖W‖|S = s]

)
. (15)

Note that in (15) the proposed regularization based on the
Wasserstein distance echos the spirit of the well-known mini-
mum description length problem [2].

Finally, we provide an example to illustrate the generaliza-
tion bound given in Theorem 2.

Example 2. Let Z1, . . . , Zn be i.i.d. Gaussian random vari-
ables N (m,σ2) and consider the empirical risk LS(w) =
||w|−|Z̄||, where S = (Z1, · · · , Zn) and Z̄ , Z1+···+Zn

n .
Assume that w is found using gradient descent with step size
ε� m and initial point uniformly distributed in (−ε, ε).

In order to bound W(PW , PW |Z̄=z̄) for a given z̄ ∈ R, we
introduce

Ṽz̄ = B (z̄ + U) and V = B(m+R),

where Pr(B = 1) = Pr(B = −1) = 0.5, U is uniformly
distributed over (−ε/2, ε/2), and R has a density function

pR(r) =
1

ε

∫ ∞
−∞

I[r−ε/2,r+ε/2](z̄)pZ̄−m(z̄)dz̄. (16)

Due to the triangle inequality,

W(PW , PW |Z̄=z̄)

≤W(PW , PV ) + W(PV , PṼz̄ ) + W(PṼz̄ , PW |Z̄=z̄). (17)

We first provide an upper bound for W(PV , PṼz̄ ). By the
definition of Wasserstein distance, we have

W(PV , PṼz̄ ) ≤ E
[∣∣∣Ṽz̄ − V ∣∣∣]

≤ |z̄ −m|+E [|U |] + E [|R|]

= |z̄ −m|+ ε

4
+ E [|R|] .

Observe that, for all r ∈ R, pR(−r) = pR(r). Hence,

E [|R|] = 2

∫ 2ε

0

rpR(r)dr + 2

∫ ∞
2ε

rpR(r)dr

≤ 2ε+ 2

∫ ∞
2ε

∫ ∞
−∞

r

ε
I[r−ε/2,r+ε/2](z̄)pZ̄−m(z̄)dz̄dr,

where we used (16). By Tonelli’s theorem,

E [|R|] ≤ 2ε+ 2

∫ ∞
−∞

∫ ∞
2ε

r

ε
I[z̄−ε/2,z̄+ε/2](r)pZ̄−m(z̄)drdz̄

≤ 2ε+ 4

∫ ∞
0

z̄pZ̄−m(z̄)dz̄

= 2ε+ 2

√
2σ2

πn
,

where the last equality follows from the fact that
E [|N −m|] =

√
2σ2/π whenever N ∼ N (m,σ2). There-

fore,

W(PV , PṼz̄ ) ≤ |z̄ −m|+
9ε

4
+ 2

√
2σ2

πn
. (18)

The randomness of choosing an initial point will be trans-
lated into the randomness of the output hypothesis produced
by gradient descent and, consequently,

pW |Z̄=z̄(w) =
1

2ε

(
I|w+z̄|≤ε/2 + I|w−z̄|≤ε/2

)
,

whenever |z̄|> ε/2. In this case, W(PṼz̄ , PW |Z̄=z̄) = 0. When
|z̄|≤ ε/2, it can be verified that pW |Z̄=z̄ and pṼz̄ are supported
within [−ε, ε]. Therefore,

W(PṼz̄ , PW |Z̄=z̄) ≤

{
2ε |z̄|≤ ε/2,
0 |z̄|> ε/2.

(19)

Finally, it can be shown that, for |w|> ε,

pW (w) =

∫ ∞
−∞

pZ̄(z̄)pW |Z̄=z̄(w)dz̄

=

∫ −w+ε/2

−w−ε/2

pZ̄(z̄)

2ε
dz̄ +

∫ w+ε/2

w−ε/2

pZ̄(z̄)

2ε
dz̄

= pV (w).

A routine argument then reveals that

W(PW , PV ) ≤ 2ε. (20)

By plugging (18), (19), and (20) in (17), we obtain that

E
[
W(PW , PW |Z̄=z̄)

]
≤ 25

4
ε+ 3

√
2σ2

πn
,

where we used the fact that E
[
|Z̄ −m|

]
=
√

2σ2

πn . Since Ls(·)
is 1-Lipschitz for all s, Theorem 2 implies in this case that

∣∣gen(µ, PW |S)
∣∣ ≤ 25

4
ε+ 3

√
2σ2

πn
. (21)

Observe that in this example E [LS(W )] ≈ ε. Hence,
the bound in (21) bears a similar structure as the bound in
Theorem 1. Nonetheless, computing the bound in Theorem 1
for this example proves to be much harder than the present
derivations. The reason is that two distributions supported over
(−ε, ε) may have a large (even maximum!) total variation,
while their Wasserstein distance is always not greater than 2ε.

IV. CONCLUSIONS

By following an information-theoretic perspective, we de-
rived two bounds on the generalization error of learning algo-
rithms. Motivated by inherent drawbacks of existing bounds
based on mutual information, we rather employed two dif-
ferent instances of the Wasserstein distance, by considering
either the discrete metric or — at the expense of introducing
a Lipschitz constraint on the loss function — a generic
metric. We hope our results provide a geometric insight on
the interplay between the in-sample approximation and out-
of-sample generalization.
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APPENDIX A
PROOF OF LEMMA 1

Let Ū , f(X̄) − E
[
f(X̄)

]
and U , f(X) − E

[
f(X̄)

]
.

For any T ≥ 0,

E
[
f(X̄)− f(X)

]
= E

[
Ū
]
− E [U ]

= E
[
ŪI−E[f(X̄)]≤Ū<0

]
+ E

[
ŪI0≤Ū≤T

]
+ E

[
ŪIT<Ū

]
− E

[
UI−E[f(X̄)]≤U<0

]
− E [UI0≤U≤T ]− E [UIT<U ]

≤
∣∣∣E [ŪI−E[f(X̄)]≤Ū<0

]
− E

[
UI−E[f(X̄)]≤U<0

]∣∣∣
+
∣∣E [ŪI0≤Ū≤T

]
− E [UI0≤U≤T ]

∣∣+ E
[
ŪIT<Ū

]
. (22)

To bound the first term in (22), we define, for all x ∈ X ,

g(x) ,
(
E
[
f(X̄)

]
− f(x)

)
I0≤f(x)≤E[f(X̄)].

Note that g(x) ≥ 0 and ‖g‖∞≤ E
[
f(X̄)

]
. It can be proved

that for a measurable and non-negative function h : X → R,∣∣E [h(X̄)− h(X)
]∣∣ ≤ ‖h‖∞TV(P,Q), (23)

where X̄ ∼ Q and X ∼ P . Hence,∣∣∣E [ŪI−E[f(X̄)]≤Ū<0

]
− E

[
UI−E[f(X̄)]≤U<0

]∣∣∣
=
∣∣E [g(X̄)− g(X)

]∣∣ ≤ E
[
f(X̄)

]
· TV(P,Q). (24)

Similarly,∣∣E [ŪI0≤Ū≤T
]
− E [UI0≤U≤T ]

∣∣ ≤ T · TV(P,Q). (25)

We now bound the last term in (22). Recall that for any non-
negative random variable V , E [V ] =

∫∞
0

Pr(V > v)dv. Thus,

E
[
ŪIŪ>T

]
= T Pr

(
Ū > T

)
+

∫ ∞
T

Pr
(
Ū > t

)
dt. (26)

Since Ū = f(X̄)− E
[
f(X̄)

]
is σ-subgaussian, we have that

Pr(Ū > t) ≤ e−t2/(2σ2) for all t ≥ 0. In particular,∫ ∞
T

Pr
(
Ū > t

)
dt ≤

∫ ∞
T

e−t
2/(2σ2)dt ≤ σ2

T
e−T

2/(2σ2),

where the last inequality follows from Mill’s inequality. Hence,

E
[
ŪIŪ>T

]
≤ Te−T

2/(2σ2) +
σ2

T
e−T

2/(2σ2). (27)

By plugging (24), (25), and (27) in (22), we conclude that
E
[
f
(
X̄
)
− f(X)

]
is upper bounded by(

E
[
f(X̄)

]
+ T

)
TV(P,Q) +

(
T +

σ2

T

)
e−T

2/(2σ2).

By taking T =
√
−2σ2 log(δ) with δ , TV(P,Q), we obtain

that E
[
f
(
X̄
)
− f(X)

]
is upper bounded by

E
[
f(X̄)

]
· δ +

√
2σδ

(
2
√
− log(δ) +

1

2
√
− log(δ)

)
.

Therefore, we get the desired conclusion.

APPENDIX B
PROOF OF THEOREM 1

We set P = PS,W , Q = PS ⊗ PW , and f(s, w) =
1
n

∑n
i=1 `(w, zi) in Lemma 1 and follow a similar procedure

as the decoupling estimate proposed in [1]. Specifically, the
expected generalization error can be written as

gen(µ, PW |S) = E
[
f(S̄, W̄ )

]
− E [f(S,W )] , (28)

where the joint distributions of (S,W ) and (S̄, W̄ ) are
PS,W = µ⊗n ⊗ PW |S and PS̄,W̄ = PS ⊗ PW , respectively.
If `(w,Z) is σ-subgaussian for all w ∈ W , then f(S,w)
is σ/

√
n-subgaussian due to the i.i.d. assumption on Zi.

Consequently, f(S̄, W̄ ) is σ/
√
n-subgaussian since S̄ and W̄

are independent.

APPENDIX C
PROOF OF THEOREM 2

Let (S,W ) ∼ PS,W , (S̄, W̄ ) ∼ PS ⊗ PW . Observe that∣∣gen(µ, PW |S)
∣∣ = |E [Lµ(W )− LS(W )]|

=
∣∣E [LS̄(W̄ )

]
− E [LS(W )]

∣∣ .
By a conditioning argument, we obtain that∣∣gen(µ, PW |S)

∣∣
=

∣∣∣∣∫ dPS(s)
(
E
[
Ls(W̄ )

]
− E [Ls(W )|S = s]

)∣∣∣∣
≤ L · E

[
W(PW , PW |S)

]
, (29)

where (29) follows from the Kantorovich-Rubinstein duality.


