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Abstract

We study the central problem in data privacy: how to share data with an analyst while providing
both privacy and utility guarantees to the user that owns the data. We present an estimation-theoretic
analysis of the privacy-utility trade-off (PUT) in this setting. Here, an analyst is allowed to reconstruct
(in a mean-squared error sense) certain functions of the data (utility), while other private functions
should not be reconstructed with distortion below a certain threshold (privacy). We demonstrate how
a χ2-based information measure captures the fundamental PUT, and characterize several properties of
this function. In particular, we give a sharp bound for the PUT. We then propose a convex program to
compute privacy-assuring mappings when the functions to be disclosed and hidden are known a priori.
Finally, we evaluate the robustness of our approach to finite samples.
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1 Introduction

Data sharing and publishing is increasingly common within scientific communities [1], businesses [2], gov-

ernment operations [3], medical fields [4] and beyond. Data is usually shared with an application in mind,

from which the data provider receives some utility. For example, when a user shares her movie ratings with

a streaming service, she receives utility in the form of suggestions of new, interesting movies that fit her

taste. As a second example, when a medical research group shares patient data, their aim is to enable a

wider community of researchers and statisticians to learn interesting patterns from that data. Utility is then

gained through new scientific discoveries.

The disclosure of non-encrypted data incurs a privacy risk through unwanted inferences. In our previous

examples, the streaming service may infer the user’s political preference (potentially deemed private by the

user) from her movie ratings, or an insurance company may determine the identity of a patient in the medical

dataset. If privacy is a concern but the data has no immediate utility, then cryptographic methods suffice.

The dichotomy between privacy and utility has been widely studied by computer scientists, statisticians

and information theorists alike. While specific metrics and models may vary among these communities, their

desideratum is the same: to design mechanisms that perturb the data (or functions thereof) while achieving

an acceptable privacy-utility trade-off (PUT). The feasibility of this goal depends on the chosen privacy and

utility metric, as well as the topology and distribution of the data. The information-theoretic approach to

privacy, and notably the results of Sankar et al. [5] [6], Issa et al. [7] [8], Asoodeh et al. [9] [10], Calmon

et al. [11] [12], among others, seeks to quantify the best possible PUT for any privacy mechanism. Here,

information-theoretic quantities, such as mutual information or maximal leakage, are used to characterize

privacy, and, under assumptions of the distribution of the data, bounds on the fundamental PUT are derived.

It is within this information-theoretic approach that the present work is inscribed.
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Our aim is to characterize the fundamental performance limits of privacy-assuring mechanisms from

an estimation-theoretic perspective, and to develop data-driven privacy-assuring mechanisms that provide

estimation-theoretic guarantees. The specific privacy and utility metric used is the χ2-information between

probability distributions, and more generally, the principal inertia components (PICs) of the distribution of

the private and disclosed data. The PICs reveal interesting facets of data disclosure under privacy constraints,

and quantify the minimum mean-squared error (MMSE) achievable for reconstructing both private and useful

information from the disclosed data. We do not seek to claim that the estimation-based approach subsumes

other privacy metrics (e.g. differential privacy [13]). Rather, our goal is to show that the MMSE-view reveals

an interesting facet of data disclosure which, in turn, can drive the design of privacy mechanisms used in

practice.

The rest of the paper is organized as follows. In Section 2, we review the definition of PICs and present

some properties of the PICs. In Section 3, we introduce the χ2-privacy-utility function and give several

properties based on this function. In Section 4, we discuss a fine-grained case and propose a PIC-based

convex program to find privacy-assuring mappings. Finally, robustness of our approach to limited samples

is discussed in Section 5.

1.1 Related work

Several papers, such as Sankar et al. [5], Calmon et al. [12], Asoodeh et al. [14], and Makhdoumi et al. [15],

have studied information disclosure with privacy guarantees through an information-theoretic lens. For

example, Sankar et al. [5] characterized PUTs in large databases using tools from rate-distortion theory.

Calmon et al. [12] presented lower bounds for the minimum mean-squared-error of estimating private func-

tions of a plaintext given knowledge of other, disclosed functions. Makhdoumi et al. [15] introduced the

privacy funnel, where both privacy and utility are measured in terms of mutual information, and showed its

connection with the information bottleneck [16]. The PUT was also explored in [17] and [18] using mutual

information as a privacy metric. Currently, the most adpopted definition of privacy is differential privacy

([13], [19]), which enables queries to be computed over a database while simultaneously ensuring privacy of

individual entries of the database. Fundamental bounds on composition of differentially private mechanisms

were given by Kairouz et al. [20]. Other quantities from the information-theoretic literature have been used

to quantify privacy and utility. For example, Asoodeh et al. [9] and Calmon et al. [11] used estimation-

theoretic tools to characterize fundamental limits of privacy. Also of note, Liao et al. ([21], [22]) explored

the PUT within a hypothesis testing framework.

We introduce the χ2-privacy-utility function in this paper. Related privacy-utility functions and proof

techniques that inspired our approach have appeared in [9], [10], and [23].

1.2 Notation

For a positive integer n, we define [n] , {1, ..., n}. Matrices are denoted in bold capital letters (e.g. P) and

vectors in bold lower-case letters (e.g. p). For a vector p, diag(p) is defined as the matrix with diagonal

entries equal to p and all other entries equal to 0. Capital letters (e.g. X and Y ) are used to denote random

variables, and calligraphic letters (e.g. X and Y) denote sets. The span of a set S of vectors is

span(S) ,

{
k∑
i=1

λivi

∣∣∣k ∈ N,vi ∈ S, λi ∈ R

}
. (1)
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We denote independence of X and Y by X |= Y and write X ∼ Y to indicate that X and Y have the same

distribution. When X, Y , Z form a Markov chain, we write X → Y → Z. For a discrete random variable

X with probability mass function PX , we denote PXmin , inf{PX(x)|x ∈ X}. The MMSE of estimating X

given Y is

mmse(X|Y ) , min
X→Y→X̂

E
[
(X − X̂)2

]
= E

[
(X − E(X|Y ))2

]
. (2)

The χ2-information between two random variables, X and Y , is defined as

χ2(X;Y ) , E
[(

PX,Y (X,Y )

PX(X)PY (Y )

)]
− 1. (3)

Let PX and QX be two probability mass functions with the same discrete support set X . We denote

||PX −QX ||1,
∑
x∈X |PX(x)−QX(x)|. For any real-valued random variable X, we denote the Lp-norm of

X as

||X||p, (E [|X|p])1/p.

The set of all functions that when composed with a random variable X with distribution PX result in an

L2-norm smaller than 1 is given by

L2(PX) , {f : X → R | ‖f(X)‖2≤ 1} . (4)

1.3 Privacy Setup

Throughout this paper, S denotes a variable to be hidden (e.g. political preference), and X is an observed

variable that depends on S (e.g. movie ratings). Our goal is to disclose a realization of a random variable

Y , produced from X through a randomized mapping PY |X , called the privacy-assuring mapping. Here, S,

X and Y satisfy the Markov condition S → X → Y . We assume that an analyst will provide some utility

based on an observation of Y (e.g. movie recommendations), while potentially trying to estimate S from Y .

Privacy and utility will be quantified in terms of how well the analyst can reconstruct/estimate functions of

S and X given Y , respectively. The support sets of S, X and Y are S = {1, ..., |S|}, X = {1, ..., |X |} and

Y = {1, ..., |Y|}, respectively. Furthermore, we assume |S|, |X | and |Y| are bounded.

2 Principal Inertia Components

We present next the properties of the PICs that will be used in this paper. For a more detailed overview,

we refer the reader to [11] and the references therein. We use the definition of PICs presented in [11], but

note that the PICs predate [11] (e.g. [24], [25] and the references therein).

Definition 1 ([11], Definition 1). Let X and Y be r.v.s with support sets X and Y, respectively, and

distribution PX,Y . In addition, let f0 : X → R and g0 : Y → R be the constant functions f0(x) = 1 and

g0(y) = 1. For k ∈ Z+, we (recursively) define

λk(X;Y ) = max {E [f(X)g(Y )]
2 |f ∈ L2(PX), g ∈ L2(PY ),E [f(X)fj(X)] = 0,

E [g(Y )gj(Y )] = 0, j ∈ {0, . . . , k − 1}}, (5)
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where

(fk, gk) , argmax {E [f(X)g(Y )]
2 |f ∈ L2(PX), g ∈ L2(PY ),E [f(X)fj(X)] = 0,

E [g(Y )gj(Y )] = 0, j ∈ {0, . . . , k − 1}}. (6)

The values λk(X;Y ) are called the principal inertia components (PICs) of PX,Y . The functions fk and gk

are called the principal functions of X and Y .

Observe that the PICs satisfy λk(X;Y ) ≤ 1, since fk ∈ L2(PX) gk ∈ L2(PY ) and

E [f(X)g(Y )] ≤ ‖f(X)‖2‖g(Y )‖2≤ 1.

Thus, from Definition 1, λk+1(X;Y ) ≤ λk(X;Y ) ≤ 1.

Definition 2 ([11], Definition 14). Let d , min{|X |, |Y|} − 1, and λd(X;Y ) the smallest PIC of PX,Y . We

define

δ(PX,Y ) ,

λd(X;Y ) if |Y|≤ |X |,
0 otherwise.

We also denote λd(X;Y ) as λmin(X;Y ) throughout this paper.

When both random variables X and Y have a finite support set, we have the following definition.

Definition 3. For X = [m] and Y = [n], let PX,Y ∈ Rm×n be a matrix with entries [PX,Y ]i,j = PX,Y (i, j),

and DX ∈ Rm×m and DY ∈ Rn×n be diagonal matrices with diagonal entries [DX ]i,i = PX(i) and [DY ]j,j =

PY (j), respectively, where i ∈ [m] and j ∈ [n]. We define

QX,Y , D
−1/2
X PX,Y D

−1/2
Y . (7)

We denote the singular value decomposition of QX,Y by QX,Y = UΣVT .

The next theorem illustrates the different characterizations of the PICs used in this paper.

Theorem 1 ([11], Theorem 1). The following characterizations of the PICs are equivalent:

1. The characterization given in Definition 1 where, for fk and gk given in (6), gk(Y ) = E[fk(X)|Y ]
‖E[fk(X)|Y ]‖2

and fk(X) = E[gk(Y )|X]
‖E[gk(Y )|X]‖2 .

2. For any k ∈ Z+,

1− λk(X;Y ) = min
{
mmse(f(X)|Y )

∣∣∣f ∈ L2(PX), ‖f(X)‖2= 1,E [f(X)hj(X)] = 0, j ∈ {0, . . . , k − 1}
}
,

(8)

where

hk , argmin
{
mmse(f(X)|Y )

∣∣∣f ∈ L2(PX), ‖f(X)‖2= 1,E [f(X)hj(X)] = 0, j ∈ {0, . . . , k − 1}
}
. (9)

If λk(X;Y ) is unique, then hk = fk given in (6).

Finally, if both X and Y are defined over finite supports, the following characterization is also equivalent.
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3.
√
λk(X;Y ) is the (k + 1)-st largest singular value of QX,Y . The principal functions fk and gk in (6)

correspond to the columns of the matrices D
−1/2
X U and D

−1/2
Y V, respectively, where QX,Y = UΣVT .

The equivalent characterizations of the PICs in the above theorem have the following intuitive interpreta-

tion: the principal functions can be viewed as a basis that decompose the mean-squared error of estimating

functions of a hidden variable X given an observation Y .

It has been shown (e.g. [11]) that χ2(S;Y ) =
∑d
i=1 λi(S;Y ) where d = min{|S|, |Y|} − 1. If χ2(S;Y ) is

small, say χ2(S;Y ) ≤ ε < 1, then, equivalently, the sum of all PICs is upper-bounded by ε. Since the PICs

are non-negative, each PIC is also upper-bounded by ε. Consequently, from characterization 2 in Theorem

1, it follows that the MMSE of reconstructing any zero-mean, unit variance function of S given Y is lower

bounded by 1−ε, i.e. all functions of S cannot be reconstructed with small MMSE given an observation of Y .

In other words, functions of S cannot be reliably estimated from the disclosed variable Y in a mean-squared

error sense, and, depending on the value of ε and the needs of the user, privacy is assured in this estimation-

theoretic sense. If 1 ≤ ε� d, then some functions of S may be (perfectly) revealed, but most PICs of PS,Y

are still small and, thus, most functions of S are hard to estimate from Y . Analogously, if χ2(X;Y ) has a

large lower bound, then certain functions of X can be, on average, reconstructed (i.e. estimated) with small

MMSE from an observation of Y .

The previous discussion demonstrates how χ2-information can be used to measure both privacy and

utility from an estimation-theoretic view, where estimation is measured in terms of MMSE. We will adopt

χ2-information as a measure of both privacy and utility in the next section, and explore the fundamental

PUT in terms of this metric.

3 Privacy-Utility Trade-off

The results introduced in this section use the following definition.

Definition 4. We define the χ2-privacy-utility function as:

hS,X(ε) , sup
PY |X∈DS,X(ε)

χ2(X;Y ),

where (S,X) has fixed joint distribution PS,X , 0 ≤ ε ≤ χ2(S;X) and

DS,X(ε) , {PY |X |S → X → Y, χ2(S;Y ) ≤ ε}.

Remark 1. Note that PY |X → χ2(S;Y ) is a continuous mapping for fixed PS,X and finite support set S,

X , Y. Therefore, DS,X(ε) is a compact set and the supremum in hS,X(ε) is indeed a maximum.

Lemma 1. hS,X(ε) is a concave function. Furthermore, ε→ hS,X(ε)
ε is a non-increasing mapping.

Proof. The proof is given in the appendix.

The χ2-privacy-utility function has an upper-bound

hS,X(ε) ≤ ε+ |X |−1− χ2(S;X), (10)
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that follows immedieatly by the data-processing inequality:

χ2(S;X) + χ2(X;Y ) ≤ χ2(S;Y ) + χ2(X;X). (11)

We provide next a sharp bound for the χ2-privacy-utility function that significantly improves (10) by using

properties of the PICs. We will use the following definition and two lemmas to derive this result.

Lemma 2. Suppose S → X → Y . Then

χ2(X;Y ) = tr(A)− 1, (12)

χ2(S;Y ) = tr(BA)− 1, (13)

where

A = QX,Y QT
X,Y ,B = QT

S,XQS,X .

Proof. The proof is given in the appendix.

Definition 5. For ti ∈ [0, 1] (i ∈ [n]),
∑
i∈[n] ti ≥ ε and m ≥ n, Gmε (t1, ..., tn) is defined as follows:

Gmε (t1, ..., tn) , max

{
m∑
i=1

xi

∣∣∣∣∣(x1, ..., xm) ∈ Dmε (t1, ..., tn)

}
, (14)

where

Dmε (t1, ..., tn) ,

(x1, ..., xm)

∣∣∣∣∣
n∑
j=1

tjxj ≤ ε, xi ∈ [0, 1], i ∈ [m]

 . (15)

Gmε (t1, ..., tn) is the solution of a linear program which, in turn, can be written in the closed form given

in the next lemma.

Lemma 3. Suppose 1 ≥ t1 ≥ ... ≥ tn−s > tn−s+1 = ... = tn = 0 without loss of generality. If

n−s∑
j=n−s−i+1

tj ≤ ε ≤
n−s∑

j=n−s−i
tj

where i = 0, ..., n− 1− s, then

Gmε (t1, ..., tn) = s+ (m− n) + i+
ε−∑n−s

j=n−s−i+1 tj

tn−s−i
. (16)

And

xj = 1, for j = n− s− i+ 1, ...,m,

xn−s−i =
ε−∑n−s

j=n−s−i+1 tj

tn−s−i
,

xl = 0, for l = 1, ..., n− s− i− 1

can achieve the maximum in the definition of Gmε (t1, ..., tn).
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We next give an upper bound and a lower bound for the χ2-privacy-utility function. These bounds are

illustrated in Fig. 1.

Theorem 2. For the χ2-privacy-utility function hS,X(ε) defined in Definition 4,

|X |−1

χ2(S;X)
ε ≤ hS,X(ε) ≤ G|X |−1ε (λ1(S;X), ..., λd(S;X)),

where d , min{|S|, |X |} − 1 and λ1(S;X), ..., λd(S;X) are the PICs of PS,X .

Proof. The lower bound for hS,X(ε) follows immediately from the concavity of hS,X(ε).

Using Lemma 2, the χ2-privacy-utility function can be simplified as follows:

hS,X(ε) = max
PY |X∈DS,X(ε)

tr(A)− 1,

DS,X(ε) = {PY |X |S → X → Y, tr(BA)− 1 ≤ ε},

where

A = QX,Y QT
X,Y ,B = QT

S,XQS,X .

We denote the singular value decomposition of QS,X and QX,Y by QS,X = WΣ1U
T and QX,Y =

VΣ2M
T , respectively. Then B = UΣT

1 Σ1U
T = UΣBUT , A = VΣ2Σ

T
2 VT = VΣAVT where ΣB , ΣT

1 Σ1

and ΣA , Σ2Σ
T
2 .

Let A1 = UTAU = LΣALT where L , UTV. Suppose the diagonal elements of A1 are a1, ..., a|X |.

Then

tr(BA)− 1 = a1 − 1 +

d+1∑
i=2

λi−1(S;X)ai. (17)

Suppose the i-th row of L is li = (li,1, ..., li,|X |), the i-th column of U is uTi and ΣA = diag(σ1, ..., σ|X |). By

the definition of PICs, σ1 = 1, σj+1 = λj(X;Y ) for j = 1, ..., d and σj+1 = 0 for j = d+ 1, ..., |X |−1. Then

for i ∈ {1, 2, ..., |X |}

0 ≤ ai =

|X |∑
j=1

σj l
2
i,j ≤

|X |∑
j=1

l2ij = 1.

Since the first column of U and V are both (
√
PX(1), ...,

√
PX(|X |))T following the properties of PICs, then

l1 = u1V = (1, 0, ..., 0). Therefore, a1 = σ1 = 1. If PY |X ∈ DS,X(ε), then by Equation (17)

tr(BA)− 1 =

d+1∑
i=2

λi−1(S;X)ai ≤ ε,

which implies

(a2, ..., a|X |) ∈ D|X |−1ε (λ1(S;X), ..., λd(S;X)).

Thus,

hS,X(ε) ≤ max


|X |∑
i=2

ai

∣∣∣∣∣(a2, ..., a|X |) ∈ D|X |−1ε (λ1(S;X), ..., λd(S;X))

 = G|X |−1ε (λ1(S;X), ..., λd(S;X)).
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✏

hS,X(✏)

|X | � 1

|X | � 2

1

O

�min(S; X) �1(S; X)�2(S; X)

�2(S; X)

.

.

.

. . .

Figure 1: Upper bound and lower bound for χ2-privacy-utility function when δ(PS,X) > 0.

Remark 2. The upper bound can also be proved by combining the trace inequality [26, Eq. (4)] with

properties of the PICs.

If the value of hS,X(0) is known, a better lower bound can be obtained as follows:

|X |−1− hS,X(0)

χ2(S;X)
ε+ hS,X(0) ≤ hS,X(ε). (18)

When S = X, then χ2(S;X) = |X |−1 and hS,X(ε) = ε. Following Definition 5 and noticing that all

PICs of PS,X are 1, then it can be shown that the upper bound and the lower bound for χ2-privacy-utility

function in Theorem 2 are both ε, which is equal to hS,X(ε). Therefore, the upper bound and lower bound

given in Theorem 2 is sharp.

Corollary 1. hS,X(ε) is a strictly increasing function for ε ∈ [0, χ2(S;X)].

Proof. Firstly, hS,X(ε) is non-decreasing. To see this, denote χ2(S;X) by ε0. Since hS,X(ε) is a concave

function, it is sufficient to show that, for every ε, hS,X(ε) ≤ hS,X(ε0). For any Y , χ2(X;Y ) ≤ |X |−1 which

implies hS,X(ε) ≤ |X |−1. On the other hand, hS,X(ε0) = |X |−1. Thus, hS,X(ε) ≤ hS,X(ε0).

Now suppose there exists 0 ≤ ε1 < ε2 ≤ χ2(S;X), such that hS,X(ε1) = hS,X(ε2). Since hS,X(ε) is a

concave and non-decreasing function, then for any ε > ε1, hS,X(ε) = hS,X(ε1). In particular, hS,X(ε1) =

hS,X(ε0) = |X |−1. This contradicts the upper bound of χ2-privacy-utility function in Theorem 2 since the

upper bound implies that hS,X(ε) < |X |−1 when ε < ε0.

Definition 6. ∂DS,X(ε) , {PY |X |S → X → Y, χ2(S;Y ) = ε}.

By Corollary 1, hS,X(ε) is strictly increasing. Therefore,

hS,X(ε) = max
PY |X∈DS,X(ε)

χ2(X;Y ) = max
PY |X∈∂DS,X(ε)

χ2(X;Y ). (19)
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By Corollary 7 in [11], when δ(PS,X) = 0, then hS,X(0) > 0 (i.e. there exists a privacy-assuring mapping

that allows the disclosure of a non-trivial amount of useful functions while guaranteeing perfect privacy). On

the other hand, when δ(PS,X) > 0, then hS,X(0) = 0. The following theorem shows that when δ(PS,X) > 0,

the upper bound of hS,X(ε) in Theorem 2 is achievable around zero implying that the upper bound is sharp

around 0. This theorem also provides a specific way to construct the random variable Y which achieves the

upper bound in the high privacy region.

Theorem 3. Suppose δ(PS,X) > 0 and PXmin > 0. Then there exists a Y such that S → X → Y ,

χ2(X;Y ) = PXmin and χ2(S;Y ) = PXminλmin(S;X).

Proof. From Theorem 1 in [11], there exists f ∈ L2(PX) such that ||f(X)||2= 1, E [f(X)] = 0 and

||E [f(X)|S] ||22= λmin(S;X).

Fix Y = {1, 2} and the privacy-assuring mapping from X to Y is defined as follows:

PY |X(y|x) =
1

2
+ (−1)y

√
PXminf(x)

2
. (20)

Since

1 = ||f(X)||22=

|X |∑
x=1

f(x)2PX(x) ≥ f(x)2PX(x),

for any x

|f(x)|≤ 1√
PX(x)

≤ 1√
PXmin

.

Therefore, |
√
PXminf(x)

2 |≤ 1
2 , which implies that PY |X(y|x) is feasible. Furthermore, PY (y) = 1

2 because of

E [f(X)] = 0.

χ2(X;Y ) =

|X |∑
x=1

|Y|∑
y=1

PY |X(y|x)2PX(x)

PY (y)
− 1

=

|X |∑
x=1

(PX(x) + PXminf(x)2PX(x))− 1

= PXmin.

Since

PY |S(y|s) =

|X |∑
x=1

PY |X(y|x)PX|S(x|s)

=

|X |∑
x=1

(
1

2
+ (−1)y

√
PXminf(x)

2

)
PX|S(x|s)

=
1

2
+ (−1)y

√
PXmin

2
E [f(X)|S = s] ,
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then

χ2(S;Y ) =

|S|∑
s=1

|Y|∑
y=1

PY |S(y|s)2PS(s)

PY (y)
− 1

=

|S|∑
s=1

(
PS(s) + PXminE [f(X)|S = s]

2
PS(s)

)
− 1

= PXminλmin(S;X).

Remark 3. When δ(PS,X) > 0 and PXmin > 0, then hS,X(ε̂) = PXmin, where ε̂ = PXminλmin(S;X). Since

(ε̂, PXmin) is a point on the upper bound of χ2-privacy-utility function given in Theorem 2, Theorem 3 shows

that, in this case, the upper bound is achievable in the high privacy region.

4 A Convex Program for Computing Privacy-Assuring Mappings

In the previous section we studied χ2-based metrics for both privacy and utility. This metric captures the

overall error (in a mean-squared sense) of estimating functions of the private and the useful variables S and

X, respectively. We used χ2-information to measure both privacy and utility, and derived bounds for the

PUT curve. The upper bound is shown to be achievable in the high privacy region in Theorem 3.

Next, we explore an alternative, finer-grained approach for measuring both privacy and utility based on

the PICs (recall that χ2-information is the sum of all PICs). This approach has a practical motivation,

since often in there are well defined features (functions) of the data (realizations of a random variable)

that should be hidden or disclosed. For example, a user might be comfortable revealing that his/her age is

above a certain threshold, but not the age itself. Alternatively, a user may be willing to disclose that they

prefer documentaries over action movies, but not exactly which documentary they like. More abstractly, we

consider the case where certain known functions of a hidden variable should be revealed (utility), whereas

others should be hidden (privacy). This is a finer-grained setting than the one used in the last section, since

χ2-information captures the aggregate reconstruction error across all zero-mean, unit variance functions.

We denote the set of functions to be hidden as

P(S) , {si(S)|si ∈ L2(PS),E [si(S)] = 0, ||si(S)||2= 1, i ∈ [m]}.

We denote the set of functions to be disclosed as

U(X) , {ui(X)|ui ∈ L2(PX),E [ui(X)] = 0, ||ui(X)||2= 1, i ∈ [n]}.

The goal is to find the privacy-assuring mapping, PY |X , such that S → X → Y and Y satisfies the following

privacy-utility constraints.

1. Utility constraints: max{mmse(ui(X)|Y )}i∈[n] ≤ ∆ and X ∼ Y .

2. Privacy constraints: mmse(si(S)|Y ) ≥ θi, i ∈ [m].

In this section, we follow two steps, projection and optimization, to find this privacy-assuring mapping.

11



4.1 Projection

As a first step, we project all private functions to the observed variable and obtain a new set of functions:

P(X) ,

{
ŝi(X) ,

E [si(S)|X]

||E [si(S)|X] ||2

∣∣∣i ∈ [m]

}
.

The advantage of projection is twofold. First, it can significantly improve computational time of solving the

optimization program, since after projection all functions are cast in terms of the observed random variable.

Second, the hidden variable is not needed any more after the projection – the optimization solver only needs

observed data. Therefore, the party that solves the optimization does not need access to the private data

directly, further guaranteeing the safety of the sensitive information. Finally, the following theorem proves

that privacy guarantees be cast in terms of the projected functions still hold for the original functions.

Theorem 4. For S → X → Y , f ∈ L2(PS) and E [f(S)] = 0, we have

E [E [f(S)|X]] = 0, (21)

and

mmse

(
f(S)

||f(S)||2

∣∣∣∣∣Y
)
≥ mmse

(
E [f(S)|X]

||E [f(S)|X] ||2

∣∣∣∣∣Y
)
. (22)

Proof. Suppose ||f(S)||2= 1 without loss of generality.

Observe that

E [E [f(S)|X]] = E [f(S)] = 0.

Since f(S)→ X → Y , then E [f(S)|X] = E [f(S)|X,Y ]. Therefore,

mmse

(
E [f(S)|X]

||E [f(S)|X] ||2

∣∣∣∣∣Y
)

=
E
[
E [f(S)|X]

2
]
− E

[
E [E [f(S)|X] |Y ]

2
]

||E [f(S)|X] ||22

=
E
[
E [f(S)|X]

2
]
− E

[
E [E [f(S)|X,Y ] |Y ]

2
]

||E [f(S)|X] ||22

=1−
E
[
E [f(S)|Y ]

2
]

||E [f(S)|X] ||22

=E
[
f(S)2

]
−

E
[
E [f(S)|Y ]

2
]

||E [f(S)|X] ||22
≤E

[
f(S)2

]
− E

[
E [f(S)|Y ]

2
]

=mmse(f(S)|Y ),

where the last inequality follows from Jensen’s inequality:

1 = E
[
f(S)2

]
= E

[
E
[
f(S)2|X

]]
≥ E

[
E [f(S)|X]

2
]

= ||E [f(S)|X] ||22.

12



By Theorem 4, mmse(si(S)|Y ) ≥ mmse(ŝi(X)|Y ). Therefore, if the new set of functions satisfies the pri-

vacy constraints(i.e. mmse(ŝi(X)|Y ) ≥ θi), the original set of functions also satisfies the privacy constraints

(i.e. mmse(si(S)|Y ) ≥ θi).

4.2 Optimization

After projection, both privacy and utility functions are based on the observed random variable. Next, we

introduce a PIC-based convex optimization program to find the privacy-assuring mapping.

First, we construct F given by (f0, f1, ..., f|X |−1) such that

FTDXF = I, (23)

span({f0, ..., fn′}) = span({f0,u1, ...,un}), (24)

where

fi = (fi(1), ..., fi(|X |))T

and

ui = (ui(1), ..., ui(|X |))T .

From (23), {fk(x)|k = 0, ..., |X |−1} is a basis of L2(PX), and the functions ŝi(x) can be decomposed as

ŝi(x) =

|X |−1∑
k=0

αi,kfk(x), (25)

If PX,Y = DXFΣFTDX is a feasible joint distribution matrix, then the following equations follow

directly from Theorem 1:

E [fi(X)fj(X)] = 0,

E [gi(Y )gj(Y )] = E
[

E [fi(X)|Y ]

‖E [fi(X)|Y ] ‖2
E [fj(X)|Y ]

‖E [fj(X)|Y ] ‖2

]
= 0,

mmse(fi(X)|Y ) = 1− λi(X;Y ),

where i 6= j. Moreover, it follows that

mmse(ŝi(X)|Y ) =

|X |−1∑
k=0

α2
i,k(1− λk(X;Y )). (26)
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Therefore, the design of PY |X is equivalent to solving the following convex program:

max σ

s.t. σ0 = 1,

σi ≥ σ, (i = 1, ..., n′)

|X |−1∑
k=0

α2
i,kσ

2
k ≤ 1− θi, (i = 1, ...,m)

0 ≤ σi ≤ 1, (i = 1, ..., |X |−1)

Σ = diag(1, σ1, ..., σ|X |−1),

PX,Y = DXFΣFTDX ,

PX,Y has non-negative entries.

The previous convex program can be potentially solved by standard solvers. We also note that when all

useful functions and private functions are based on the same random variable, we can use optimization

without projection.

5 Robustness to Finite Sample Size

Fig. 2 illustrates one potential pipeline for designing privacy-assuring mappings in practice. We assume that

samples of S and X are independently drawn from a source with distribution QS,X . During train time (step

1), a reference dataset with n samples is drawn from QS,X . The distribution of the source is estimated by

computing the empirical distribution (type) PŜ,X̂ of the reference dataset. PŜ,X̂ and the privacy and utility

constraints are then used as inputs to a convex program that returns the corresponding privacy-assuring

mapping PŶ |X̂ (if feasible). We denote by Ŷ the random variable produced by randomizing X̂ according to

PŶ |X̂ , i.e. by applying the privacy-assuring mapping to a source with distribution PŜ,X̂ . During test time,

new i.i.d. samples from the source QS,X are randomized using the privacy-assuring mapping PŶ |X̂ computed

during train time, resulting in the disclosed variable Y .

The privacy and utility constraints used for computing the privacy-assuring mapping hold for a data

source with distribution PŜ,X̂ , since this is the distribution used as an input to the optimization program.

However, during test time, PŶ |X̂ is applied to new samples from the source QS,X . Do the privacy and utility

guarantees still hold during test time? Since as n increases PŜ,X̂ converges to QS,X , it is natural to expect

that the privacy and utility guarantees during test time will not be far from the ones selected during train

time.

In this section, we prove that for privacy and utility measured in terms of χ2-information, with probability

1−β the privacy and utility guarantees at test time are at least O

(√
m
n log n

m
m
√
β

)
close to the ones selected

during train time where m = |S||X ||Y|. Similar analysis of robustness and generalization has appeared in

[27] and [28].

We analyze next the robustness of the PUT optimization using χ2-information, and characterize the gap

between test and train time privacy and utility guarantees in terms of the number of samples in the reference

dataset.

The main result makes use of the following technical lemmas.
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Figure 2: Flowchart for train time (step 1) and test time (step 2).

Lemma 4. Let a, b, c, d ∈ [0, 1], then

|ad− bc|≤ a|b− d|+b|a− c|≤ |b− d|+|a− c|.

Proof. The proof is given in the appendix.

Lemma 5. Let PX̂(x) and QX(x) be two probability mass functions with the same discrete and finite support

set X . Let PŶ (y) and QY (y) be two probability mass functions with the same discrete and finite support set

Y. Suppose min{PŶ min, QYmin, PX̂min, QXmin} > 0. Then

|χ2(X̂; Ŷ )− χ2(X;Y )|≤
4||PX̂,Ŷ −QX,Y ||1

PX̂minPŶ minQXminQYmin
≤

4
√

2DKL(PX̂,Ŷ ||QX,Y )

PX̂minPŶ minQXminQYmin
.

Proof.

|χ2(X̂; Ŷ )− χ2(X;Y )|≤
|X |∑
x=1

|Y|∑
y=1

∣∣∣∣∣ PX̂,Ŷ (x, y)2

PX̂(x)PŶ (y)
− QX,Y (x, y)2

QX(x)QY (y)

∣∣∣∣∣ .
And ∣∣∣∣∣ PX̂,Ŷ (x, y)2

PX̂(x)PŶ (y)
− QX,Y (x, y)2

QX(x)QY (y)

∣∣∣∣∣ ≤ |PX̂,Ŷ (x, y)2QX(x)QY (y)−QX,Y (x, y)2PX̂(x)PŶ (y)|
PX̂minPŶ minQXminQYmin

.

Using Lemma 4, we can obtain:

|PX̂,Ŷ (x, y)2QX(x)QY (y)−QX,Y (x, y)2PX̂(x)PŶ (y)|
≤|PX̂,Ŷ (x, y)2 −QX,Y (x, y)2|+|PX̂(x)PŶ (y)−QX(x)QY (y)|
≤2|PX̂,Ŷ (x, y)−QX,Y (x, y)|+PŶ (y)|PX̂(x)−QX(x)|+QX(x)|PŶ (y)−QY (y)|.

Then
|X |∑
x=1

|Y|∑
y=1

PŶ (y)|PX̂(x)−QX(x)|= ||PX̂ −QX ||1≤ ||PX̂,Ŷ −QX,Y ||1.
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The following inequality holds by the same reason.

|X |∑
x=1

|Y|∑
y=1

QX(x)|PŶ (y)−QY (y)|≤ ||PX̂,Ŷ −QX,Y ||1.

Therefore,

|χ2(X̂; Ŷ )− χ2(X;Y )|≤
4||PX̂,Ŷ −QX,Y ||1

PX̂minPŶ minQXminQYmin
≤

4
√

2DKL(PX̂,Ŷ ||QX,Y )

PX̂minPŶ minQXminQYmin
,

where the second inequality follows from Pinsker’s inequality.

Remark 4. When PŶ |X̂ = QY |X , we can improve the result as follows:

|χ2(X̂; Ŷ )− χ2(X;Y )|≤
2||PX̂,Ŷ −QX,Y ||1
PŶ minQYmin

≤
2
√

2DKL(PX̂,Ŷ ||QX,Y )

PŶ minQYmin
. (27)

The following theorem is our main result in this section. It answers the question raised at the beginning

of this section and provides the rate of the convergence in terms of n.

Theorem 5. Let PŜ,X̂ be the empirical distribution obtained from n i.i.d. samples that is used to deter-

mine the mapping PŶ |X̂ , and QS,X be the true distribution of the data. In addition, denote by QY the

distribution after applying PŶ |X̂ to samples from QS,X . Suppose Ŝ and S, X̂ and X, Ŷ and Y have the

same discrete and finite support set as S, X and Y, respectively. We define m = |S||X ||Y|. Assume

min{PŜmin, QSmin, PŶ min, QYmin} > 0 and n� m.

(a) If χ2(X̂; Ŷ ) ≥ ε1, then with probability 1− β,

χ2(X;Y ) ≥ ε1 −O

√m

n
log

n

m m
√
β

 . (28)

(b) If χ2(Ŝ; Ŷ ) ≤ ε2, then with probability 1− β,

χ2(S;Y ) ≤ ε2 +O

√m

n
log

n

m m
√
β

 . (29)

Proof. The distribution PŜ,X̂ is the type (Chap.11 in [29]) of n observations of QS,X . Then from Corollary

2.1 in [30], for τ > 0

P (DKL(PŜ,X̂ ||QS,X) ≥ τ) ≤
(
n+m− 1

m− 1

)
e−nτ ≤

(
e(n+m)

m

)m
e−nτ .

Also, since PŶ |X̂ = QY |X , then DKL(PŜ,X̂,Ŷ ||QS,X,Y ) = DKL(PŜ,X̂ ||QS,X). By the chain rule,

DKL(PŜ,Ŷ ||QS,Y ) ≤ DKL(PŜ,X̂,Ŷ ||QS,X,Y ) = DKL(PŜ,X̂ ||QS,X),

DKL(PX̂,Ŷ ||QX,Y ) ≤ DKL(PŜ,X̂ ||QS,X).
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Choosing

τ =
1

n
log

(
1

β

(
e(n+m)

m

)m)
.

Therefore, with probability 1− β,

DKL(PX̂,Ŷ ||QX,Y ) ≤ τ,
DKL(PŜ,Ŷ ||QS,Y ) ≤ τ.

(a)By Remark 4, with probability 1− β,

|χ2(X̂; Ŷ )− χ2(X;Y )|≤
2
√

2DKL(PX̂,Ŷ ||QX,Y )

PŶ minQYmin

≤ 2
√

2τ

PŶ minQYmin

=
2
√

2

PŶ minQYmin

√
1

n
log

(
1

β

(
e(n+m)

m

)m)

=O

√m

n
log

n

m m
√
β

 .

Thus, with probability 1− β

χ2(X;Y ) ≥χ2(X̂; Ŷ )− |χ2(X̂; Ŷ )− χ2(X;Y )|

≥ε1 −O

√m

n
log

n

m m
√
β

 .

(b)By the same reason,

|χ2(Ŝ; Ŷ )− χ2(S;Y )|≤ O

√m

n
log

n

m m
√
β

 .

Thus, with probability 1− β

χ2(S;Y ) ≤χ2(Ŝ; Ŷ ) + |χ2(Ŝ; Ŷ )− χ2(S;Y )|

≤ε2 +O

√m

n
log

n

m m
√
β

 .

6 Concluding remarks

In this paper, we studied the fundamental PUT in data disclosure, where χ2-information was used to measure

both privacy and utility. Several properties of the PUT were characterized through the χ2-privacy-utility

function. Moreover, a finer-grained, PIC-based convex optimization framework was proposed to design

privacy-assuring mechanisms. Finally, we analyzed the robustness of our method to finite samples. Our
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analysis was based on the difference between the realizations of an observed random variable and its expected

type. Analyzing the effectiveness of other distribution estimation methods is the subject of future work.
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Appendix A Proof of Lemma 1

For 0 ≤ ε1 < ε2 < ε3 ≤ χ2(S;X), it suffices to show that

hS,X(ε3)− hS,X(ε1)

ε3 − ε1
≤ hS,X(ε2)− hS,X(ε1)

ε2 − ε1
,

which is equivalent to
ε2 − ε1
ε3 − ε1

hS,X(ε3) +
ε3 − ε2
ε3 − ε1

hS,X(ε1) ≤ hS,X(ε2). (30)

Let PY1|X and PY3|X be two optimal solution in DS,X(ε1) and DS,X(ε3), respectively. Assume that Y1 and

Y3 take values in [m1] and [m3], respectively. Furthermore, we denote λ , ε2−ε1
ε3−ε1 . Next, we introduce a new

privacy-assuring mapping defined as

PYλ|X(y|x) ,

λPY3|X(y|x) if y ∈ [m3],

(1− λ)PY1|X(y −m3|x) if y −m3 ∈ [m1].
(31)

Consequently, we have

PYλ(y) =

λPY3
(y) if y ∈ [m3],

(1− λ)PY1(y −m3) if y −m3 ∈ [m1].
(32)

Then

χ2(X;Yλ) =E
[
PX,Yλ(X,Yλ)

PX(X)PYλ(Yλ)

]
− 1

=
∑

y∈[m3]

|X |∑
x=1

PX,Yλ(x, y)2

PX(x)PYλ(y)
+

∑
y−m3∈[m1]

|X |∑
x=1

PX,Yλ(x, y)2

PX(x)PYλ(y)
− 1

=
∑

y∈[m3]

|X |∑
x=1

PYλ|X(y|x)2PX(x)

PYλ(y)
+

∑
y−m3∈[m1]

|X |∑
x=1

PYλ|X(y|x)2PX(x)

PYλ(y)
− 1

=
∑

y∈[m3]

|X |∑
x=1

λ2PY3|X(y|x)2PX(x)

λPY3
(y)

+
∑

y∈[m1]

|X |∑
x=1

(1− λ)2PY1|X(y|x)2PX(x)

(1− λ)PY1
(y)

− 1

=λχ2(X;Y3) + (1− λ)χ2(X;Y1).

Similarly, we have

χ2(S;Yλ) = λχ2(S;Y3) + (1− λ)χ2(S;Y1) ≤ ε2, (33)

which implies that PYλ|X ∈ DS,X(ε2). Therefore,

hS,X(ε2) ≥ χ2(X;Yλ)

= λχ2(X;Y3) + (1− λ)χ2(X;Y1)

=
ε2 − ε1
ε3 − ε1

hS,X(ε3) +
ε3 − ε2
ε3 − ε1

hS,X(ε1), (34)

which implies that (30) is true, so hS,X(ε) is a concave function.

Then
hS,X(ε)

ε
=
hS,X(ε)− hS,X(0)

ε
+
hS,X(0)

ε
. (35)
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hS,X(0)
ε is non-increasing because hS,X(0) is non-negative. Since hS,X(ε) is concave,

hS,X(ε)−hS,X(0)
ε is also

non-increasing. Therefore,
hS,X(ε)

ε is non-increasing.

Appendix B Proof of Lemma 2

By the definition of χ2-information,

χ2(X;Y ) + 1 =

|X |∑
x=1

|Y|∑
y=1

PX,Y (x, y)

PX(x)PY (y)
PX,Y (x, y).

Note that QX,Y = D
− 1

2

X PX,Y D
− 1

2

Y ,

tr(QX,Y QT
X,Y ) = tr(D

− 1
2

X PX,Y D−1Y PT
X,Y D

− 1
2

X )

= tr(D−1X PX,Y D−1Y PT
X,Y )

=

|X |∑
x=1

|Y|∑
y=1

PX,Y (x, y)

PX(x)

PX,Y (x, y)

PY (y)
.

Therefore,

χ2(X;Y ) = tr(QX,Y QT
X,Y )− 1 = tr(A)− 1.

Since

QS,Y = D
− 1

2

S PS,Y D
− 1

2

Y

= D
− 1

2

S PS,XD
− 1

2

X D
− 1

2

X PX,Y D
− 1

2

Y

= QS,XQX,Y ,

then
χ2(S;Y ) = tr(QS,Y QT

S,Y )− 1

= tr(QS,XQX,Y QT
X,Y QT

S,X)− 1

= tr(BA)− 1.

Appendix C Proof of Lemma 4

Since a, b, c, d ∈ [0, 1], then

|ad− bc| = |ad− ab+ ab− bc|
≤ a|b− d|+b|a− c|
≤ |b− d|+|a− c|.

Acknowledgement

The authors are indebted to Muriel Médard, Shahab Asoodeh, Salman Salamatian and Lalitha Sankar for

discussions and feedback on the results presented here.

21


	Introduction
	Related work
	Notation
	Privacy Setup

	Principal Inertia Components
	Privacy-Utility Trade-off
	A Convex Program for Computing Privacy-Assuring Mappings
	Projection
	Optimization

	Robustness to Finite Sample Size
	Concluding remarks
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 4

