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Abstract

We investigate the fairness concerns of training a machine
learning model using data with missing values. Even though
there are a number of fairness intervention methods in the lit-
erature, most of them require a complete training set as input.
In practice, data can have missing values, and data missing
patterns can depend on group attributes (e.g. gender or race).
Simply applying off-the-shelf fair learning algorithms to an
imputed dataset may lead to an unfair model. In this paper,
we first theoretically analyze different sources of discrimi-
nation risks when training with an imputed dataset. Then,
we propose an integrated approach based on decision trees
that does not require a separate process of imputation and
learning. Instead, we train a tree with missing incorporated as
attribute (MIA), which does not require explicit imputation,
and we optimize a fairness-regularized objective function. We
demonstrate that our approach outperforms existing fairness
intervention methods applied to an imputed dataset, through
several experiments on real-world datasets.

1 Introduction

Datasets can contain missing values, i.e., unobserved vari-
ables that would be meaningful for analysis if observed (Lit-
tle and Rubin 2019). In many domains ranging from sur-
vey data, electronic health records, and recommender sys-
tems, data missingness is so common that it is the norm
rather than the exception. This challenge has inspired sig-
nificant research on methods to handle missing values (Lit-
tle and Rubin 2019; Schafer and Graham 2002; Buuren and
Groothuis-Oudshoorn 2010; Royston 2004; Molenberghs
and Kenward 2007). Data missingness is usually modeled
as a random process independent of non-missing features.
However, when it comes to human-related data, data miss-
ingness often correlates with the subject’s sociodemographic
group attributes'. For example, in medical data, there can be
more missing values in low-income patients as they are more
likely to refuse to take costly medical tests. In survey data,
questionnaires can be less friendly for a certain population,
e.g., the fonts are too small for elderly participants, or the
language is too difficult for non-native English speakers. We
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"We refer to attributes that identify groups of individuals (e.g.,
age, ethnicity, sex) as group attributes.

show a concrete example of different missing patterns in dif-
ferent sociodemographic groups in the high school longitu-
dinal study (HSLS) dataset (Ingels et al. 2011), which con-
tains education-related surveys from students and parents?.
In the parent survey, there are generally 6-7% more missing
values in under-represented minority (URM) students® com-
pared to White and Asian students. On the questions related
to secondary caregivers, URM students had 15% more miss-
ing values, as there are disproportionately more children in
a single-parent family in URM (Bureau 2019).

In the machine learning (ML) pipeline, missing values are
handled in the preprocessing step (either dropping missing
entries or performing imputation) before training a model.
When there exist disparate missing patterns across different
groups, how missing values are treated can affect the final
trained prediction model, not just its accuracy, but also its
fairness. Despite the ubiquity of the problem, fairness issues
in missing values have gained only limited attention (Fer-
nando et al. 2021; Wang and Singh 2021). The burgeoning
literature on fair ML algorithms either overlooks the exis-
tence of missing data or assumes that the training data are
always complete (see e.g., Calmon et al. 2017; Hardt, Price,
and Srebro 2016; Zemel et al. 2013; Zafar et al. 2019; Feld-
man et al. 2015; Menon and Williamson 2018).

In this work, we connect two well-studied, yet still mostly
disjoint research areas—handling missing values and fair
ML—and answer a crucial question:

In order to train a fair model on data with missing values,
is it sufficient to first impute the data then apply a fair
learning algorithm?

We address this question through both a theoretical analysis
and an experimental study with real-world datasets.

In the first part of the paper, we examine the limitation
of the disconnected process of imputing first and training
next. We identify three different potential sources of dis-
crimination. First, we show that depending on the missing
patterns, the performance of imputation methods can be dif-
ferent per group. As a result, the predictive model trained
on imputed data can inherit and propagate biases that ex-
ists in the imputed data. Then, we show that even when we

2See Section C of the supplementary material for details

3In this paper we use the term URM to include Black, Hispanic,
Native American and Pacific Islander.



use an imputation method that has an unbiased performance
at the training time, if different imputation is employed at
the testing time, this can give rise to discriminatory perfor-
mance of the trained model. Finally, we prove a fundamental
information-theoretic result: there is no universally fair im-
putation method for different downstream learning tasks.

To overcome the above-mentioned limitations, we pro-
pose an integrated approach, called Fair MIP Forest, which
learns a fair model without the need for explicit imputa-
tion. The Fair MIP Forest algorithm is a decision tree based
approach that combines two different ideas: missing incor-
porated as attribute (MIA) (Twala, Jones, and Hand 2008)
for handling missing values and mixed integer programming
(MIP) (Bertsimas and Dunn 2017) formulation to optimize a
fairness-regularized objective function. By marrying the two
ideas, we are able to optimize fairness and accuracy in an
end-to-end fashion, instead of finding an optimal solution for
the imputation process and the training process separately.
Finally, we propose using an ensemble of fair trees instead
of training a single tree. This reduces overall training time
and improves accuracy. We implement the Fair MIP Forest
algorithm and test it on three real-world datasets, including
the aforementioned HSLS dataset. The experimental results
show that our approach performs favorably compared to ex-
isting fair learning algorithms trained on an imputed dataset
in terms of fairness-accuracy trade-off.

1.1 Related Works

Methods that handle missing values have a long history in
statistics (Little and Rubin 2019; Schafer and Graham 2002;
Buuren and Groothuis-Oudshoorn 2010; Royston 2004;
Molenberghs and Kenward 2007; Stekhoven and Biihlmann
2012; Tang and Ishwaran 2017). The simplest way of han-
dling missing values is dropping rows with missing entries
(also known as complete case analysis). However, in the
missing values literature, it is strongly advised to use all the
available data as even with a small missing rate (e.g. 2-3%),
dropping can lead to suboptimal performance and unethi-
cal selection bias (Newman 2014). A more desirable way
to deal with missing values is imputation (Little and Ru-
bin 2019), where missing entries are replaced with a new
value. This includes inserting dummy values, mean impu-
tation, or regression imputation (e.g. k-nearest neighbor (k-
NN) regression) (Donders et al. 2006; Zhang 2016; Bertsi-
mas, Pawlowski, and Zhuo 2017). Multiple imputation is a
popular class of imputation methods (Rubin 2004; Wulff and
Jeppesen 2017; White, Royston, and Wood 2011) that draws
a set of possible values to fill in missing values, as opposed
to single imputation that substitutes a missing entry with a
single value. While our theoretical analysis focuses on single
imputation for its simplicity, our proposed Fair MIP Forest
algorithm shares conceptual similarities with multiple im-
putation since we train multiple trees with different random
mini batches, each of which treats missing values differently.

Alternatively, some ML models do not require an explicit
imputation step. Decision trees, for instance, have several
ways to handle missing values directly such as surrogate
splits (Breiman et al. 2017), block propagation (Ke et al.
2017), and missing incorporated as attribute (MIA) (Twala,

Jones, and Hand 2008). In the second part of the paper,
we focus on decision trees with MIA as it is empirically
shown to outperform other missing values methods in de-
cision trees (Kapelner and Bleich 2015; Josse et al. 2019).

We study the problem of learning from incomplete data
and its fairness implications. In this regard, our work is re-
lated with Kallus, Mao, and Zhou (2021); Fogliato, G’Sell,
and Chouldechova (2020); Mehrotra and Celis (2021) which
consider the case where the sensitive attributes or labels
are missing or noisy (e.g. due to imputation). In contrast,
we focus on the case where the input features are missing
and may thus impact performance in downstream prediction
tasks. The works that are most relevant to our work are Fer-
nando et al. (2021); Wang and Singh (2021) as they exam-
ine the intersection of general data missingness and fairness.
While Fernando et al. (2021) presents a comprehensive in-
vestigation on the relationship between fairness and miss-
ing values, their analyses are limited to observational and
empirical studies on how different ways of handling miss-
ing values can affect fairness. Wang and Singh (2021) pro-
poses reweighting scheme that assigns lower weight to data
points with missing values by extending the preprocessing
scheme given in Calmon et al. (2017). The question we ad-
dress in this work is fundamentally different from these two
works. We examine if we can rectify fairness issues that arise
from missing values by applying existing fair learning algo-
rithms after imputation. Unlike the previous works that are
limited to empirical evaluations, we demonstrate the poten-
tial fairness risk of learning from imputed data from a theo-
retical perspective. Our theoretical analysis is inspired by a
line of works (see e.g., Chen, Johansson, and Sontag 2018;
Feldman et al. 2015; Zhao and Gordon 2019) which aim
to quantify and explain algorithmic discrimination. Further-
more, our solution to learning a fair model from missing val-
ues is an in-processing approach that explicitly minimizes
widely-adopted group fairness measures such as equalized
odds or accuracy parity, in contrast to the preprocessing ap-
proach in Wang and Singh (2021).

Our proposed Fair MIP Forest algorithm is inspired by
Aghaei, Azizi, and Vayanos (2019) that introduced training
a fair decision tree using mixed integer linear programming.
Framing decision tree training as an integer program was
first suggested in Bertsimas and Dunn (2017), and adapted
and improved in Verwer and Zhang (2017, 2019). Unlike
conventional decision tree algorithms where splitting at each
node is determined in a greedy manner, this formulation
produces a tree that minimizes a specified objective func-
tion. We follow the optimization formulation given in Bert-
simas and Dunn (2017), but we add MIA in the optimization
to decide the optimal way to send missing entries at each
branching node. To the best of our knowledge, our work
is the first one to include missing value handling in the in-
teger optimization framework. Furthermore, unlike Aghaei,
Azizi, and Vayanos (2019) which only had statistical parity
as a fairness regularizer, we implement four different fair-
ness metrics (FPR/FNR/accuracy difference and equalized
odds) in the integer program. Finally, we go one step fur-
ther from training a single tree, and propose using an en-
semble of weakly-optimized trees. Raff, Sylvester, and Mills



(2018) also studies a fair ensemble of decision trees. How-
ever, their approach follows the conventional greedy ap-
proach and does not consider missing values.

2 Framework

Supervised learning and disparate impact. Consider a
supervised learning task where the goal is to predict an out-
come random variable Y € ) using an input random feature
vector X € X. For a given loss function £ : J) x J) — R™,
the performance of an ML model h : & — ) can be
measured by a population risk L(h) £ E[((h(X),Y)].
Some typical choices of the loss function are 0-1 loss
lo1(y,y) = I[g = y] for classification task or mean squared
loss £o(7,y) = (§ — y)? for regression. Since the underly-
ing distribution Px y is unknown, one usually minimizes an
empirical risk instead using a dataset of samples drawn from
X and Y given by D = {(x;,9i)}i—;:

n

1
min ;ah(xz),y», (1)
where H is a class of predictive models (e.g., neural net-
works or logistic regression).

A model h exhibits disparate impact (Barocas and Selbst
2016) if its performance varies across population groups,
defined by a group attribute S. For simplicity, we assume
that S is binary, but our framework can be extended to a
more general intersectional setting. For a given loss func-
tion ¢/, we measure the performance of h on group s by
Ly(h) = E[¢((h(X),Y) | S = s] and say that h is discrimi-
natory if Lo(h) # L1 (h). We define the discrimination risk
as:

Disc(h) £ [Lo(h) — Ly (h)|. ()
We refer the readers to Dwork et al. (2018); Donini et al.
(2018) for a discussion on how to recover some com-
monly used group fairness measures, such as equalized
odds (Hardt, Price, and Srebro 2016), by selecting different
loss functions in (2). In this paper, we say a model ensures
fairness when (2) is small or zero for a chosen loss function.

Data missingness. In practice, data may contain features
with missing values. We assume that the complete data are
composed of two components: observed variables Xqps and
a missing variables X,s. For the purpose of our theoretical
analysis, we assume that only single variable is missing—a
common simplifying assumption made in the statistics liter-
ature (Little and Rubin 2019). We introduce a binary vari-
able M for indicating whether X ¢ is missing (i.e., M =1
if and only if X5 is missing). Finally, we define the incom-

plete feature vector by X = (Xobs, Xms) € X where

o [ M =0
R otherwise.

Note that we drop the assumption that only one variable is
missing when developing the Fair MIP Forest in Section 4.

Missing data can be categorized into three types (Little
and Rubin 2019) based on the relationship between missing
pattern and observed variables:

* Missing completely at random (MCAR) if M is indepen-
dent of X;

* Missing at random (MAR) if M depends only on the ob-
served variables X p;

* Missing not at random (MNAR) if neither MCAR nor
MAR holds.

Even though most missing patterns in the real world are
MNAR, the theoretical studies on imputation methods often
rely on the MCAR (or MAR) assumption. However, when
the missing pattern varies across groups, even if the each
group satisfies MCAR/MAR, it is possible that entire pop-
ulation does not, and vice versa. This is formalized in the
following lemma.

Lemma 1. There exist data distributions such that (i) each
group satisfies MCAR (or MAR) but the entire population
does not or (ii) the entire population satisfies MCAR (or
MAR) but each group does not.

Data imputation. Using incomplete feature vectors for
solving the empirical risk minimization in (1) may be chal-
lenging since most optimizers, such as gradient-based meth-
ods, only take real-valued inputs. To circumvent this is-
sue, one can impute missing values by applying a mapping
fimp : X — X on the incomplete feature vector X.

3 Risks of Training with Imputed Data

A model trained on imputed data may manifest disparate
impacts for various reasons. For example, the imputation
method can be inaccurate for the minority group, leading
to a biased imputed dataset. As a result, models trained on
the imputed dataset may inherit this bias. In this section,
we identify three different ways imputation can fail to pro-
duce fair models: (i) the imputation method may have dif-
ferent performance per group, (ii) there can be a mismatch
between the imputation methods used during training and
testing time, and (iii) the imputation method may be applied
without the knowledge of the downstream predictive task.
For the last point, we prove that there is no universal im-
putation method that ensures fairness across all downstream
learning tasks.

3.1 Biased Imputation Method

To quantify the performance of an imputation method and
how it varies across different groups, we introduce the fol-
lowing definition.

Definition 1. The performance of an imputation method
fimp on group s is measured by

Ly(fimp) 2 E || fimp(X) = X3 | M= 1,5 =] . (3)
Furthermore, we define the discrimination risk of finp by

Disc(fimp) £ |L0(fimp) - Ll(fimp)|~ “4)

Next, we show that even when data satisfy the simplest
assumption of MCAR within each group, the optimal impu-

tation f{i can still exhibit discrimination risk.



Theorem 1. Assume that data from each group are MCAR.
For the sake of illustration, we let X, = () and the optimal
imputation method be

f;ﬂp = argmin E [(fzmp()?) - X)2 | M = 1} ’

Simp

We can decompose its discrimination risk as

Disc(f7,,) = (P = #6°) (m1 — mo)?
+ (Var [ X|S = 0] — Var[X|S = 1])|

where p™ = Pr(S = s|M = 1) and ms, = E[X|S = s| for
s €{0,1}.

This theorem reveals three factors which may cause dis-
crimination in data imputation: (i) different proportion of
missing data, pi*® —p{®, (ii) difference in group means, m; —
my, and (iii) different variance per group, Var [X|S = 0] —
Var [X|S = 1]. The first factor could be caused by differ-
ent missing pattern across groups. Since Xgs = 0, an
optimal imputation method would be imputing a constant,
and the optimal constant is the population mean for the L2
loss.* Hence, the second factor measures the gap between
the per-group optimal imputation methods. Finally, the vari-
ance quantifies the performance of the mean imputation on
each group. Therefore, the last factor indicates how suitable
the mean imputation is for each group.

Remark 1. We briefly discuss how to improve the fair-
ness of imputation based on the factors identified in The-
orem 1. First, if the bias mainly comes from the differ-
ence pi® — pg®, then one can collect more samples from
the minority group which has more missing data or resam-
ple the training dataset. Second, if the mean values of each
group are significantly different (i.e., m; — my is large),
then one can impute the missing values for each group sepa-
rately, assuming it is legal and ethical to do so (Dwork et al.
2018; Wang et al. 2021). Lastly, if the variance difference
Var [X|S = 0] — Var [X|S = 1] is large, then one may con-
sider using a different imputation mechanism for each group
instead of mean imputation.

3.2 Mismatched Imputation Methods

Imputation is an unavoidable process to train many classes
of ML models (e.g. logistic regression) in the presence of
missing values. However, a user of a trained model might
not have information on what type of imputation was per-
formed for training. People who disseminate a trained model
might omit the details about the imputation process. In some
cases, it is not possible for a model developer to disclose
all the details about the imputation due to privacy concerns.
Take mean imputation as an example. Releasing the sample
mean can leak private information in the training set, and a
user might have to estimate the sample mean from the test-
ing data, which would not precisely match that of training
data. In the following theorem, we provide how this impu-
tation mismatch between training and testing can aggravate
the discrimination risk.

*See Section A.2 in the supplementary material.

Theorem 2. For a predictive model h and an imputation
method finp, the performance on group s is measured by

Ls(hofimp) £E [E(ho fimp()?)7y) ‘ S = 5:| N E))

Assume that the loss function £ is bounded by a constant
K > 0 and data from group s € {0,1} are MCAR with
probability ps. Let firt" and fi* be the imputation methods
used in the training and testing time, respectively. Then

’Lo(ho if,fz;f) —Ly(ho zt:;)‘
< |Lo(h o figm) — Lu(ho fiam)

+ K Y pDry(Prn| P,

S

(6)

where D1y (+||-) is the total variation distance and P*™",
P! gre the probability distributions of (f“"(X),Y)|M =

imp
1S = sand (fii)(X),Y)|M = 1,5 = s, respectively.
Finally, there exist a data distribution, a predictive model,
and an imputation method such that the equality in (6) is

achieved.

The second term in the upper bound in (6) shows that
even if discrimination risk is completely eliminated at train-
ing time, a mismatched imputation method can still give rise
to an overall discrimination risk at testing time.

3.3 Imputation Without Being Aware of the
Downstream Tasks

Imputing missing values and training predictive model are
closely intertwined. On the one hand, the performance of
the predictive model relies on how missing data are imputed.
On the other hand, if data are imputed blindly without tak-
ing the downstream tasks into account, the predictive model
produced from the imputed data can be unfair. We ask a fun-
damental question on whether there exists a universally good
imputation method that can guarantee fairness and accuracy
regardless of which model class is used in the downstream.
We address this question by borrowing notions from learn-
ing theory.

Many existing fairness intervention algorithms (see e.g.,
Donini et al. 2018; Zafar et al. 2019; Celis et al. 2019; Wei,
Ramamurthy, and Calmon 2020; Alghamdi et al. 2020) can
be understood as solving the following optimization prob-
lem (or its various approximations) for a given € > 0

min L(h) )

s.t. |Lo(h) — L ()] < .

Since the imputation method changes the data distribu-
tion, it affects the solution of the optimization problem in
(7) as well. The following definition characterizes the class
of imputation methods that ensure the existence of an accu-
rate solution of (7).

Definition 2. For a given hypothesis class 7, a distribution

of (S, X ,Y), and constants €¢,J > 0, we call an imputation
method (¢, 0)-conformal if the minimal value of (7) under
the imputed data distribution is upper bounded by ¢.



Although the above definition does not say anything about
how an optimal solution can be reached, a conformal im-
putation guarantees the existence of a fair solution. On the
other hand, if non-conformal method is applied to impute
data, solving (7) will always return an unfair (or inaccurate)
solution, no matter which optimizer is used.

By definition, whether an imputation method is confor-
mal relies on the hypothesis class. Hence, one may wonder
if there is a universally conformal imputation method that
can be applied to missing values regardless of the hypothe-
sis class. However, the following theorem states that such a
method, unfortunately, does not exist.

Theorem 3. There is no universally conformal imputation
method. Specifically, for €, & < 0.5, there exists a data dis-

tribution of (S, X,Y) and two hypothesis classes Hi and
Ho such that their (e, §)-conformal imputation methods are
disjoint.

The previous theorem suggests that imputing missing val-
ues and training a predictive model cannot be treated sep-
arately. Otherwise, it may result in a dilemma where there
is no fair model computed from the imputed data. On the
other hand, it is often hard to find a conformal imputation
method that is tailored to a particular hypothesis class. In
fact, even verifying that a given imputation method is con-
formal is non-trivial without solving the optimization prob-
lem in (7).

4 Fair Decision Tree with Missing Values

The previous section reveals several ways discrimination
risks can be introduced in the process of training with im-
puted data. Motivated by the limitations of decoupling im-
putation from model training, we propose an integrated ap-
proach for learning a fair model with missing values. The
proposed approach is based on decision trees. We exploit the
“missing incorporated in attribute” (MIA) (Twala, Jones,
and Hand 2008), which uses data missingness to compute
the splitting criteria of a tree without performing explicit im-
putation. We combine MIA with the integer programming
approach for training a fair decision tree. The details of the
algorithm is described next.

4.1 Fair MIP Forest Algorithm

In this section, we propose Fair MIP Forest algorithm for
binary classification where missing value handling is em-
bedded in a training process that minimizes both classifi-
cation error and discrimination risk. The algorithm is de-
signed by marrying two different ideas: MIA and mixed in-
teger programming (MIP) formulations for fitting fair deci-
sion trees. In order to mitigate the high computational cost
and the overfitting risk of the integer programming method,
we propose using an ensemble of under-optimized trees. We
begin with providing a brief background on MIA and the
MIP formulation for decision trees.

Missing Incorporated in Attribute (MIA). MIA is a
method that naturally handles missing values in decision
trees by using missingness itself as a splitting criterion. It
treats missing values as a separate category, {*}, and at each

branching node, it sends all missing values to the left or to
the right. Le., there are two ways we can split at a branch
that uses the j-th feature:

e {X; <qorX; =x}vs{X; >q},

o {X; <q}vs{X; >qor X; =x}
Note that by setting ¢ = —oo in the first case, we can make
the split: {X; = =} vs {X; # *}.

Mixed Integer Programming (MIP) for Decision Trees.
To set up the MIP formulation, let us introduce a few nota-
tions (see Figure 1 for an illustration on a depth-2 decision
tree). We consider a decision tree 7 of fixed depth D, and
for simplicity we assume a full tree. This can be described
with an ordered set of branching nodes V and an ordered set
of leaf nodes £. Note that [V| = 2P — 1 and |£] = 2P.
Learning a decision tree with missing values corresponds to
learning four variables 7 = (P, q, ¢, u): the feature we split
on (P), splitting threshold (q), and whether to send missing
values to the left or to the right (c) at each branching node in
V), and the prediction we make at each leaf node (u). More
details on each of these variables are given below.

Recall that n is the number of samples in the training set
D and d is the number of features. At each branching node
v € V, we split on one feature specified by the one-hot-
encoded vector p, € {0,1}¢, and we let P € {0,1}IVIxd
be the matrix where each row is p,. Since p, is a one-hot
encoded vector, ) P = 1 for all v € V. When the value
is not missing, we split at the threshold g, i.e., if the feature
selected at the node v is j, a data point that has z; ; < g,
will go to the left and a data point with z; ; > ¢, will go
to the right. When x; ; is missing, then it will go to the left
if ¢, = 1 and to the right branch if ¢, = 0. Finally, we
assume that we give the same prediction to all data points in
the same leaf node, i.e., for a leaf node [ € L, the prediction
will be u; € Y.

How a tree 7 makes a prediction on an input data point,
(xi,9;) € D, can be described with two more variables:
w; € {0,1}VI and z; € {0,1}/*! (i € [n]). w; represents
where the data point goes to at each node, i.e., w;, = 1
means that the data point goes to the left branch at the
branching node v. z; is an one-hot-encoding vector that rep-
resents the final destination leaf node of the data point, i.e.,
z;; = 1 means that the data point goes to the leaf node
[ € L, and we assign y; = u.

Under this setting, we minimize the following fairness-
regularized objective function:

UD) + A - bie(D). ®)

We use 0-1 loss for £(D) and implement four different £,
accuracy difference, FNR difference, FPR difference, and
equalized odds. Section B in the supplementary material de-
scribe in detail how we encode these into a mixed integer
linear program.

Fair MIP Forest. We now describe our Fair MIP Forest
algorithm. We take an ensemble approach to train multiple
trees from different mini-batches, and employ early termi-
nation. Solving an integer program is a computationally in-
tensive and time-consuming process. However, we observed
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Figure 1: Demonstration of MIP notations for decision trees with MIA using a depth-2 tree example. The data dimension
d = 4, and P is a 3-by-4 matrix where each row dictates which feature a branching node uses for split. In the first row of
P, the third element is one, so feature_3 is used for splitting at branch node 1. The first element in q and c are used as a
splitting threshold missing values splitting at branch node 1. We also show how prediction is made for the example data point

x; =[5 100 2.2 x|. The branching decisions w; ,’s are computed for all v (highlighted in yellow). From the computed
w;,,’s, the algorithm decides the leaf node it belongs to, i.e., z;. Inthiscase z; = [0 0 0 1]. Hence, §; = uq = 0.

that in the early few iterations, we can find a reasonably
well-performing model, but it takes a long time to get to the
(local) optimum, making minute improvements over itera-
tions. Based on this observation, we terminate the optimiza-
tion for training each tree early after some time limit (£jimic),
and we use multiple weakly-optimized trees. We observed
that this not only reduces training time but also improves
prediction accuracy. Termination time (%)) and the num-
ber of trees (nyee) are hyperparameters that can be tuned.
Furthermore, we initialize each tree with the tree obtained
in the previous iteration, to reduce the time required in the
initial search. After we obtain {T(i)}izl,m’nm, for predic-
tion on a new data point, we perform prediction on each tree
and make a final decision using the majority rule.

5 Experimental Results

We present the implementation of the Fair MIP Forest algo-
rithm. Through experiments on three datasets, we compare
our proposed algorithm and existing fair learning algorithms
coupled with different imputation methods.

Datasets. We test our Fair MIP Forest algorithm on three
datasets: COMPAS (Angwin et al. 2016), Adult (Dua and
Graff 2017), and high school longitudinal study (HSLS)
dataset (Ingels et al. 2011). For Adult and COMPAS
datasets, we generate artificial missing values as the origi-
nal datasets do not contain any missing values. For missing
value generation, we chose a set of features to erase and for
a given feature, we erased randomly with different missing
probabilities per group, which are chosen so that the baseline
results (i.e., no fairness intervention) have enough dispari-
ties either in FPR or FNR (see Section C in the supplemen-
tary material). For the HSLS dataset, there was no artificial
missing value generation as the original dataset already con-
tains a substantial amount of missing values. The sensitive
attribute in Adult dataset was gender (0: Female, 1: Male),
in COMPAS dataset was race (0: Black, 1: White), and in
HSLS was also race (0:URM, 1:White/Asian).

Setup. We implemented the the Fair MIP Forest algorithm
with Gurobi 9.1.2 for solving the integer program. All exper-
iments were run on a cluster with 32 CPU cores and 32GB
memory. For each dataset, we tune hyperparameters for the
Fair MIP Forest algorithm: tree depth, number of trees, batch
size, time limit for each tree training (see Section C in the
supplementary material for details). We vary A in (8) to
obtain different points on the fairness-accuracy curve. We
compare Fair MIP Forest with the baseline, which performs
simple imputation (mean or k-NN) and then trains a deci-
sion tree. We compare our method with three fair learning
methods coupled with imputation: the exponentiated gra-
dient algorithm (Agarwal et al. 2018), disparate mistreat-
ment algorithm (Zafar et al. 2019), and equalized odds al-
gorithm (Hardt, Price, and Srebro 2016). We refer to these
by the first author’s name. All experiments are run 10 times
with different random train-test splits to measure the vari-
ance in both accuracy and fairness metrics. For COMPAS
and HSLS datasets, we choose FNR difference as a fair-
ness metric because the difference in FPR was already very
small in the baseline classifier without any fairness interven-
tion. Similarly, we only regularize FPR difference in Adult
dataset as FNR difference in the baseline was negligible. For
Agarwal and Zafar, we vary hyperparameters to get different
fairness-accuracy trade-off. Hardt does not have tunable hy-
perparameters.

Discussion. The experimental results are summarized in
Figure 2. With the COMPAS dataset, we observe that the
Fair MIP Forest algorithm achieves a better accuracy for
the same FNR difference, compared to all the other exist-
ing works we tested. In the Adult dataset, Fair MIP For-
est and Agarwal coupled with mean imputation showed the
best performance. In the HSLS experiments, Fair MIP Forest
showed superior accuracy for higher FNR difference values
although Agarwal was able to achieve smaller FNR differ-
ence (close to 0.01).

We also observe that even with the same dataset, there is
no one imputation method that has better performance in all
fair learning algorithms. For example, in Adult, while Agar-
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Figure 2: Comparison of Fair MIP Forest with existing fair-
ness intervention approaches (Zafar et al. 2019; Hardt, Price,
and Srebro 2016; Agarwal et al. 2018) coupled with mean or
k-NN imputations. Baseline indicates the result of training a
decision tree without any fair intervention. Error bars show
the standard error after 10 runs with different train-test splits.

wal clearly performs better with mean imputation, Zafar has
slightly better fairness and accuracy with k-NN imputation.
Also, notice that the performance of a fair learning algorithm
depends heavily on which imputation method was used. In
the COMPAS dataset, Zafar with mean imputation performs
significantly better than Zafar with k-NN imputation. In the
Adult dataset, Agarwal with mean imputation had better per-
formance than Agarwal with k-NN. This suggests that how
to pair which imputation with which fair learning method
for a given dataset is not a straightforward question. With
the Fair MIP Forest algorithm, we can sidestep such ques-
tion and simply apply it to any dataset with missing values.

For all experiments, we set ¢y to 60 seconds, which
means that training 30 trees takes roughly 1,800 seconds.
Compared to what is reported in Aghaei, Azizi, and Vayanos
(2019) — 15,000+ seconds for training a tree for COMPAS
and Adult datasets — this is more than 8x time saving.

6 Discussion and Future Work

In this work, we analyze different sources of fairness risks,
in terms of commonly-used group fairness metrics, when
we train a model from imputed data. Extension of our anal-
ysis to multiple imputation (e.g., MICE (Van Buuren and
Groothuis-Oudshoorn 2011)) and to other fairness metrics
(e.g., individual fairness (Dwork et al. 2012), preference-
based fairnes (Zafar et al. 2017), or rationality (Ustun, Liu,
and Parkes 2019)) would be an interesting future direction.
We then introduce our solution to training a fair model with
missing values, that utilizes decision trees. While tree-based
algorithms are a preferred choice in many settings for their
interpretability and ability to accommodate mixed data types
(categorical and real-valued), we hope our work can inspire
the development of fair handling of missing values in other
supervised models, such as neural networks. Finally, the
general question of how to design a fair imputation proce-
dure is a widely open research problem.
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A  Omitted Proofs
A.1 Proof of Lemma 1

Proof. We assume that Xops = . In this case, MCAR and MAR are equivalent so we only focus on MCAR in what follows.
First, we construct a probability distribution such that each group satisfies MCAR but the entire population does not. Let
S ~ Bernoulli(0.5) and

X|S =0~ Bernoulli(0.1), X|S =1 ~ Bernoulli(0.9),
M]|S =0 ~ Bernoulli(0.1), M]|S =1 ~ Bernoulli(0.9).
By construction, we know each group satisfies MCAR. However,

Pr(M=1,X=1)
= Pr(M=1,X =1|8 = 5)Pr(S = s)

= ZPr(M =1|S = 5)Pr(X = 1|S = s) Pr(S = s)

=0.1x01x05+09x%x09x0.5=0.41,
and
Pr(M =1)Pr(X =1)
= Pr(M =1|8 =5)Pr(S=5)> Pr(X =1|F=s)Pr(S =)

= (0.1 x0.5+0.9 x 0.5) x (0.1 x 0.5+ 0.9 x 0.5) = 0.25.

Hence, Pr(M = 1,X = 1) # Pr(M = 1) Pr(X = 1) which means that the entire population does not satisfy MCAR.
Next, we construct a probability distribution such that the entire population satisfies MCAR but each group does not. Let
S ~ Bernoulli(0.5),

Pr(M=0,X=0/S=0)=0.1, Pr(M=0,X=1|S=0)=0.3,
Pr(M=1,X=0/S=0)=04, Pr(M=1,X=1|S=0)=0.2,
and
Pr(M=0,X=0[S=1)=04, Pr(M=0,X=1|S=1)=0.2,
Pr(M=1,X=0/S=1)=0.1, Pr(M=1,X=1S=1)=0.3.
By construction,
Pr(M =0,X =0)=0.25, Pr(M=0,X=1)=0.25,
Pr(M=1,X=0)=0.25 Pr(M=1X=1)=0.25.
As a result, the entire population satisfies MCAR but each group does not satisfy this assumption. [

A.2  Proof of Theorem 1
Proof. We denote & £ fimy(*) and let p™ £ Pr(S = s|M = 1), ms = E[X|S = s| for s € {0, 1}. Then

E | (finp(X) = X)* | M = 1]
= Pr(S=s|M=1E[(a-X)*| M=1,5=s]

=> prE[(a—X)*|S=s].
Consequently, we have

* : ms - X 2 S =
« arg(gnln zs:ps [(a )7 s|



Therefore, the optimal imputation method is unique and has a closed-form expression:

x ifzeX

« if 7 ==x.

ool = {
The performance of the optimal imputation method on group s is

E[(fip(X) = X | M=1,8=s]| =E[(a" - X)?| $ = 5]
= (pg°mo + pmy — ms)2 + Var [X|S = 5]
= (m1 —m)?(PT,)? + Var [X|S = s].

Finally, we can compute the discrimination risk of the optimal imputation method:
B [(fip(R) = X)2 | M = 1,8 = 0] ~E[(fi(%) = X)? | M = 1,5 = 1]|
= | (1" = 15") (m1 — mo)* + (Var [X]S = 0] — Var [X|S = 1])].

O
A.3 Proof of Theorem 2
Proof. Since data from each group are MCAR, the quantity Ls(h o frisl;) is equal to
E[t(ho fiss(X),Y) | M =1,8 = 5| py +E [t(h o f5(X),Y) | M= 0,5 = 5| (1~ p)
—E[t(ho fi5s(R),Y) | M = 1,8 = 5| p, + E[(h(X).Y) | S = 5] (1= p,). ©
Now we can rewrite the first term as
E [0 f5(0),Y) | M = 1.8 =] = [ #(h@).5)aP ) 10)
where P! is the probability distribution of (f{7 (X X),Y)|M = 1,8 = s. Combining (9) with (10) yields
Ly(ho fit) = /e y) AP (z,y) + E[0(M(X),Y) | S = s] (1 — ps). (11)
Similarly, we have
Lo £ = pa [ €hla),0)AP(w,p) + B6H(X),Y) | S = 5] (1 p.) (12)

where P is the probability distribution of (f™n(X),Y)|M = 1,8 = s. Since the loss function is bounded between 0 and

imp
K, the variational representation of total variation distance (see Section 6.3 in Polyanskiy and Wu 2019) implies

’/e dPtram J) y /E dPtest(x y) < KDT\/(P;mmHP;CSt). (13)
By the triangle inequality and (11-13), we have
imp imp imp imp

|L0(h0 'lest) _ Ll(ho ‘test) S ’Lo(ho ‘train) _ Ll(hO ‘train)| + KZPSDTV(P;min||PStCSt)~ (14)
s

Finally, we prove that the above inequality is tight. Let the loss function be the 0-1 loss and X = (Xops, Xms) € [0, 1]2,
Y € {0,1}. Consider a binary classifier i(z1,22) = I[x2 > 0.5] and different imputation methods during training and testing
time: fIf0 (zops, %) = (Zobs, 0) and [ (Zobs, %) = (Tops, [[Tobs < 0.5]). Furthermore, we let the missing probability p; = 1

imp imp
and Pg v 1/_1 s—0 = 0(0,4),00 Px YIM=1,5-1 = = 0(1,4),0- In this case, Lo(h o frr;‘;)“) =Li(ho l“nf;,“) =0, Lo(ho fisy) = 1,
Li(ho fi£1) = 0. Consequently, the LHS and RHS of (14) are both 1. O

imp



A.4 Proof of Theorem 3

Proof. Let the loss function used for defining L(h) and L4(h) be the 0-1 loss and X = (Xops, Xms) € [0,1]%, Y € {0,1}.
Furthermore, we let Pr(S = 0) = 0.5, Pr(M = 1) = 1, and Py yiM=1,5=0 = 909,12 P% yim=1,521 = 0(1,0),0- Now
consider two hypothesis classes:

Hl £ {H[$1 > a’] | aec [07 1]}7
Ho £ {I[zs > a] | a € [0,1]}.

For ¢ < 0.5, the minimum in (7) under the imputed data distribution and hypothesis class 7{; is always 1.0 no matter which
imputation method is used. In other words, for €,6 < 0.5, the class of (e, )-conformal imputation methods under H; is
empty. However, for another hypothesis class, fimp(Zobs, ¥) = (Zobs, I[Zons < 0]) is a (€, §)-conformal imputation method and
h(zy1,x2) = ljzg > 0.5] € Hy gives a perfect solution of (7).

O

B Mixed Integer Programming for Fair Decision Tree with Missing Values

The full integer program for training a fair decision tree with MIA is given in Program 1. We first explain the variables and then
walk through each constraint in the program.

As explained in Section 4.1, p, ;,¢y,Cy,w; are parameters that determine the tree (v € V,j € [d|,l € L).
.2 (nm)

Wiy W5 Wi W and z; ; are parameters associated with the training data point (x;, y;). w; , € {0, 1} determines whether

the i-th data point goes to the left or to the right at the branching node v. This is computed for ally eV regardless of whether

the node is on the path to its destination leaf node or not. wz(lv), wﬁ), wl( ™ are auxiliary variables for computing w; ,,. Z; is an

one-hot-encoded vector of length |£| that encodes the destination leaf node of the i-th data point, i.e., z; ; = 1 indicates that the
leaf [ is the destination leaf node for the i-th data point. f; o, f;,1, and loss(!) are variables used to compute ¢(D) and £ (D) in
the objective.

The first constraint in (17) enforces the one-hot-encoding of p,, and z;. Constraints in (18)—(23) are used to obtain w; ,,. (18)
and (19) encode the following logical constraint:

pm _ )L @23 ey poi (1= mig)ziy,
oY 0, otherwise.

M € Rin (18) is a constant chosen to be large enough so that the left hand side (LHS) is always smaller than M, and € is a
small constant to close to zero (e.g., 0.001). Having e allows for numerical errors in the real-number representation of binary
variables. Notice that w(nm) is 1 when the selected feature at node v is not missing and smaller than the threshold ¢,. However,
when the feature is missing, the right hand side (RHS) is always zero. Then, w(“m) becomes equivalent to a loglcal variable that
represents if ¢, > 0. This is an condition does not say anything about where the given data point should go, i.e., the condition

encoded by w(“m) is relevant only when the value is not missing. We introduce another variable w( ("m) =1
and also the value is not missing:

W = )b i (Zje[d] Poj - (L —mij) > 0) AND (w(nm) < O)
. 0, otherwise,

) that is 1 only if w,

and this is obtained through constraints (20) and (21). When the feature is missing, we use wZ( U)

e {1, if (e Pos - miy > 0) AND (e, >0),

to determine the splitting:

Z v .
0, otherwise,

and this is computed through line (22). Finally, w; ,, can be obtained from:

Wi o (1) OR w(2) (line (23) in Program 1).

s

This can be interpreted as: the data point (x;, y;) will follow the left branch if the value is not missing and satisfies the threshold
to go to the left (z; < g,), or if the value is missing and ¢, = 1. Otherwise, it goes to the right branch. When we have w; ,, for
all v € V, z;,; can be determined through the conditions given in (24).

As we consider binary classification problem, we choose u;, prediction at leaf [, based on the majority rule:

Loif ) 120 2 D et (1— Yi)Zi,
ul:{ ’ 1 Zze[n]yzyl Zie[n]( y)z R

0, otherwise.



This is modeled into constraints (25),(26). For the loss function £(D), we use 0-1 loss, £(D) = M, where

i 17 i 05 f — 17
loss(l) = {Zlé[n]( Yi)Zi if g

1
Zie[n] Yizig, ifu=0. (15

Since this is nonlinear with respect to the variables, we model it through constraints given in (27),(28).

For the fairness regularizer, we use group fairness metrics based on confusion matrix: FNR difference, FPR difference,
equalized odds (i.e., both FNR and FPR difference), and accuracy difference. We first describe how to implement accuracy
difference (i.e., | Pr(Y # Y|S = 0) — Pr(Y # Y|S = 1)| as {g;r). To compute this, we introduce auxiliary variables f1,0 and
fi.1 (I € £) that denote the number of misclassified points per leaf, for group 0 and group 1, respectively. They can be written
as:

fio= Y —yi) (1 = si)ziy,  ifw =1,
’ Zze[n] yi(l — si)zi,l, iful =0.

fii= ZZ'G[n](1 —yi)Sizig, ifu =1,
’ ZZG[H] yisizi,la lf u; = O

f1,0’s are computed through (29)—(31) and f; ;s are computed through (32)—(34). Then, the accuracy difference between group
0 and group 1 is given as:

Zleﬁ fl,O . Zleﬁ fl,1
Diem(L =80 Yiemsi

Although the term inside the absolute value is a linear combination of the variables, taking the absolute value makes this
non-linear. Hence, instead of having (16) in the objective function directly, we model this into constraints (35) and (36).

Now we describe how this can be modified to regularize to FPR or FNR difference. To use FPR difference, we set the first
terms in (31), (34) to zero, i.e.,

Efair(,D) = (16)

fio>0—Muw, fi1>0—-Muy, VieLl
floL04+Mu +e€, fin <0+Mu +e VIEL
Additionally, we modify fg,;, to:

Zlez: fl,O Zleﬁ fl,l

Zie[n](l —si)(1 =) Zie[n] si(1 —wi)
Similarly, to use FNR difference as a regularizer, we set the first terms in (29), (30), (32),(33) to zero:

fio>0-—M(1—w), fi1>0-M(1—-w), VieCl,
fro<O0+MA—w)+e fia<0+M(IA—-w)+e VieLl and

Zfair (D) =

set Lyir tO:
Sieclio s
Zze[n](l - Sl)yl ZZE[H] Szyl)

To use equalized odds as a regularizer, we can use above formulas to compute the FPR difference and FNR difference separately,
and regularize:

IPr(Y #Y]|S=0,Y =0) —Pr(Y #Y|S=1,Y =0)| + |Pr(Y #Y|S =0,V =1) = Pr(Y #V[S =1,V =1)|.

Major differences in our formulation from the previous works (Bertsimas and Dunn 2017; Aghaei, Azizi, and Vayanos 2019)
are:

Efair(,D) =

* We implement fairness regularizers that are based on the performance difference between two groups — FNR difference,
FPR difference, equalized odds, and accuracy difference — as compared to Aghaei, Azizi, and Vayanos (2019), which only
considered statistical parity. We add leaf-wise fairness risk variables f; o and f; 1 to implement this.

* In our formulation, we have to search for an optimal c (missing value splitting criteria) in addition to P and q, which are
used for conventional non-missing splitting. A straightforward way to translate this into integer programming leads to a
quadratic program. To make it linear, we add multiple intermediate variables, such as w), w(®) and w®™™.



C Experiment Details
C.1 Datasets

We use three different datasets for evaluation: COMPAS, Adult, and High School Longitudinal Study (HSLS). While COMPAS
and Adult are widely used datasets in the fair machine learning literature, we believe that this paper is the first work to study
the fair ML aspect of the HSLS dataset. We first give brief introduction to the dataset and then illustrate how missing patterns
in the real-world survey data can have disparate missing patterns.

Description of HSLS Dataset. This dataset consists of 23,000+ participants from 944 high schools who were followed
from the 9th through 12th grade. It includes surveys from students, parents, and teachers, student demographic information,
school information, and students academic performance across several years. The goal is to predict student’s 9th-grade math
test performance from relevant variables collected prior to the test. The original dataset has thousands of features, but for our
analysis, we only utilize a set of 11 features:

VARIABLE DESCRIPTION TYPE
XIRACE Student’s race/ethnicity Categorical
XIMTHID Student’s mathematics identity Continuous
XIMTHUTI Student’s mathematics utility Continuous
XIMTHEFF Student’s mathematics self-efficacy Continuous
XIPAR2EDU Secondary caregiver’s highest level of education Categorical
XIFAMINCOME  Total family income Continuous
XIPIRELATION  Relationship between student and the primary caregiver ~ Categorical
XIPARIEMP Primary caregiver’s employment status Categorical
XISCHOOLBEL  Student’s sense of school belonging Continuous
XISTU300CC2  Student desired occupation at age 30 Categorical
XITXMSCR Student’s mathematics standardized test score Continuous

Table 1: Description of features used in the HSLS dataset

We use XIRACE to generate a binary group attribute: White/Asian (WA) and under-represented minority (URM) that includes
Black, Hispanic, Native American, and Pacific Islanders. We create a binary label from the continuous test score XITXMSCR,
to perform a binary classification on whether a student belongs to the top 50% performers or the bottom 50% performers. As
we do not consider the case when the group attribute or the label are missing, we drop data points that are missing X/RACE or
XITXMSCR. We scale every variable to be between 0 and 1.

Illustration of disparate missing patterns in the HSLS dataset. We show a real-world example of disparate missing pat-
terns in the HSLS dataset. Between male and female students, male students consistently had 1-2% more missing values in all
variables. In Table 2, we summarize missing probabilities of some variables between different demographic groups: male vs.
female and WA vs. URM. Between WA students and URM students, URM students always had higher missing probabilities
in all variables. However, the difference in missing probabilities varied widely depending on the variables. Within the student
survey variables, XIMTHID had only 3% difference between WA and URM, and X/MTHEFF had about 6% difference. For
parent survey variables, URM consistently had 6-8% higher missing probabilities. However, for the questions related to sec-
ondary caregivers, URM had a significantly higher missing rate, e.g. for X/PAR2EDU, the difference was more than 15%. On
the other hand, between genders, while the questions on secondary caregivers have a higher missing probability in general, the
difference between males and females was not significant. Without an in-depth analysis, it is not straightforward to detect how
missing patterns will vary depending on which group attributes.

Description of COMPAS and Adult datasets. For COMPAS dataset, we use eight features: age_cat_25-45, age_cat_Greater-
than-45, age_cat_Less-than-25, race, sex, priors_count c_charge_degree, two_year_recid. We use race as a group attribute (0:
Black, 1: White) and two_year_recid as a binary label (1 indicates recidivating within two years and 0 otherwise). We balance
the dataset to have equal number of Black and White subjects to isolate the issue of data imbalance out of our analysis. After
balancing, we had a total of 4206 data points.

For Adult dataset, we use the following features: age, workclass, education, education-num, marital-status, occupation,
relationship, race, gender, capital-gain, capital-loss, hours-per-week, native-country, and income. We use gender as a group
attribute (0: female, 1:male) and income as a label (0: income < 50K, 1: > 50K). For Adult, we balance the dataset both in



MISSING PROBABILITIES (%)

VARIABLE DESCRIPTION MALE FEMALE WA URM

XIMTHID Student’s mathematics identity 10.6 £03 9.3 403 4.8 £02 7.8 +03
XIMTHEFF  Student’s mathematics self-efficacy 21.2+04 19.1 +04 14.0+03 20.1+04
siAPcaLc St grader plans to enroll in an 142403 121403 76402 12.1+03

Advanced Placement (AP) calculus course
XIPARIEDU  Primary caregiver’s highest level of education 29.6 £04 275+04 228404 298+05
XIPAR2EDU  Secondary caregiver’s highest level of education 44.5 +04 434 4+05 358404 51.0+05

Table 2: Data missing probabilities of different variables between demographic groups: male vs. female or white vs. under-represented
minority (URM) in the HSLS dataset

terms of the group attribute and the label, as the original dataset is highly imbalanced, having substantially more data points
with label 0. After balancing, we had a total of 7834 data points.

As these two datasets do not contain any missing values, we artificially created missing values. The missing statistics we
created is summarized below:

Dataset Feature o e

marital-status 0.0 0.4
Adult hours-per-week 0.0 0.3

race 02 02
priors_count 04 0.1
COMPAS sex 0.6 02

Table 3: Missing statistics for Adult and COMPAS datasets we generated for our experiments.

As the goal of the paper is to examine the fairness issues and their remedy, we tested different combinations of features with
varying po and py, where pg = Pr(M = 1S = 0) and p; = Pr(M = 1|S = 1) for each missing variable. We varied py and p;
from 0.0 to 0.9, and chose the missing pattern that had considerable difference in FNR of FPR between the two groups defined
by the group attribute.

C.2 Hyperparameters

For the Fair MIP Forest algorithm, there are four hyperparameters we can choose: tree depth (D), number of trees (ngee),
time limit for training a single tree (¢m;), and the batch size. We chose D = 3 for all experiments as we did not see much
improvement in accuracy when going from D = 3 to D = 4,5. We have tried ny.. = 10, 20, 30, 40, t;m; = 60,90, 120 (s),
batch size = 200, 400, 800, and picked the ones with best performance. If the performance was similar, we chose parameters
that have smaller computational cost (e.g. smaller n..). The chosen hyperparameters are summarized below:

Dataset thimit Nuee batch_size A
COMPAS 60 30 200 {0.1,0.5, 1.0}
Adult 60 30 200 {0.1,0.14,0.17,0.5,0.8,2.0 }
HSLS 60 30 400 {0.1,1.0,3.0 }

Table 4: Summary of hyperparameters used in Fair MIP Forest.

We varied ) in Fair MIP Forest algorithm to moderate how much we regularize fairness metrics. We varied A from 0.01 to 20.
The final lambda values plotted in Figure 2 are given in Table 4. For Zafar (Zafar et al. 2019), we varied T to get different points
on the fairness-accuracy trade-off plot. The set of 7 values we tried is: {0.001, 0.01, 0.1, 1, 10, 100}. For Agarwal (Agarwal
et al. 2018), we varied € to achieve different fairness-accuracy trade-off points, and the set of values used is: {0.001, 0.005,
0.01, 0.02, 0.05, 0.1}. For all methods, we drop points under the convex curve and only keep the best performing points on the
plot.

For Agarwal and Hardt, we train a decision tree classifier with the same parameters as the baseline (i.e. decision trees with
depth 3). For Zafar, we use logistic regression, as it requires a distance-based classifier.



C.3 Implementation Details

Agarwal and Hardt are implemented with AIF360 (Bellamy et al. 2018). For Zafar, we use the code in https://github.com/
mbilalzafar/fair-classification.


https://github.com/mbilalzafar/fair-classification
https://github.com/mbilalzafar/fair-classification

Program 1: MIP Formulation for Fair Decision Tree Training with MIA

minimize ¢(D) + A - lpir(D)
qv,loss(l), fi0, fi1, bair(P) € R forveV,le L
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subject to: Z Do =1 Zz” =1

J€E[d] lel
3 a1 s < Mo (1 o)
J€ld]
= Y pog(l=mig)aiy; = —M1 - wy)
J€ld]
(1) +1>(1- Z pv,]mz,j (nm)
J€ld]
1 1 nm
z(v)— vajmlJ ()<wz(v)
j€[d]
(2)+1>Zp’0]mzj+cvg w“,_va]m”, ’U)g
J€ld] j€ld]
wl v 2 wz(lv)v wi,v Z 521,)
zig S Wi, VIE LE(v), zig <1—w;,, Vi€ LE(v)
Z 2(y; — D)zig < Muyp — e(1 —wy)
i€[n]
Z 2y —)zig > M1 — ) —e(1 — )
i€[n]
loss(l) < Z (I —yi)zig, loss(l) < Z YiZil
i€[n] i€[n]
loss(l) > Z (1 —yi)zig — M(1 —wy), loss(l z Yizig — Muy
i€[n] 1€[n]
Jio = Z (1 —yi) (1 —si)zig — M(1 —w)
Jio < Z (I —y)(1 = s3)zig + M1 —w) + €
fl0>zyl i)%i1 — Mu, flO<Zyl $i)zig + Mu; + €
i€[n]
fiai = Z (1 —yi)sizig — M(1 —w)
i€[n]
fia < Z (I —yi)sizig + M(1 —w) +e€
i€[n]
fii > Z visizig — Muy,  fin < Z Yisizig + Muy + €,
i€[n] i€[n]
ffair(D) > Zze.c fl,O Zzez: fl,1

Zie[n](]‘ - Sl) - Zze[n] i

Zleg fl,O Zleﬁ fl,l
Eair D Z - -
: ( ) <Zz€[n](1 - Sl) E'Le[n] Si

(Vv € V,Vj € [d],Vl € L,Vi € [n], except line (24))

a7)

(18)

19)

(20)

2y

(22)

(23)
(24)
(25)

(26)

27)

(28)

(29)

(30)

€2y

(32)

(33)

(34)

(35)

(36)




	Introduction
	Related Works

	Framework
	Risks of Training with Imputed Data
	Biased Imputation Method
	Mismatched Imputation Methods
	Imputation Without Being Aware of the Downstream Tasks

	Fair Decision Tree with Missing Values
	Fair MIP Forest Algorithm

	Experimental Results
	Discussion and Future Work
	Acknowledgement
	Omitted Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Mixed Integer Programming for Fair Decision Tree with Missing Values
	Experiment Details
	Datasets
	Hyperparameters
	Implementation Details


